All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cern.colt.matrix.tint.impl.DenseIntMatrix3D Maven / Gradle / Ivy

Go to download

Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.

The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose 
is hereby granted without fee, provided that the above copyright notice appear in all copies and 
that both that copyright notice and this permission notice appear in supporting documentation. 
CERN makes no representations about the suitability of this software for any purpose. 
It is provided "as is" without expressed or implied warranty.
 */
package cern.colt.matrix.tint.impl;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

import cern.colt.list.tint.IntArrayList;
import cern.colt.matrix.tint.IntMatrix1D;
import cern.colt.matrix.tint.IntMatrix2D;
import cern.colt.matrix.tint.IntMatrix3D;
import edu.emory.mathcs.utils.ConcurrencyUtils;

/**
 * Dense 3-d matrix holding int elements. First see the package summary and javadoc tree view to get the broad picture.
 * 

* Implementation: *

* Internally holds one single contiguous one-dimensional array, addressed in * (in decreasing order of significance): slice major, row major, column major. * Note that this implementation is not synchronized. *

* Memory requirements: *

* memory [bytes] = 8*slices()*rows()*columns(). Thus, a 100*100*100 * matrix uses 8 MB. *

* Time complexity: *

* O(1) (i.e. constant time) for the basic operations get, * getQuick, set, setQuick and size, *

* Applications demanding utmost speed can exploit knowledge about the internal * addressing. Setting/getting values in a loop slice-by-slice, row-by-row, * column-by-column is quicker than, for example, column-by-column, row-by-row, * slice-by-slice. Thus * *

 * for (int slice = 0; slice < slices; slice++) {
 *     for (int row = 0; row < rows; row++) {
 *         for (int column = 0; column < columns; column++) {
 *             matrix.setQuick(slice, row, column, someValue);
 *         }
 *     }
 * }
 * 
* * is quicker than * *
 * for (int column = 0; column < columns; column++) {
 *     for (int row = 0; row < rows; row++) {
 *         for (int slice = 0; slice < slices; slice++) {
 *             matrix.setQuick(slice, row, column, someValue);
 *         }
 *     }
 * }
 * 
* * @author [email protected] * @version 1.0, 09/24/99 * * @author Piotr Wendykier ([email protected]) */ public class DenseIntMatrix3D extends IntMatrix3D { private static final long serialVersionUID = 1L; /** * The elements of this matrix. elements are stored in slice major, then row * major, then column major, in order of significance, i.e. * index==slice*sliceStride+ row*rowStride + column*columnStride i.e. * {slice0 row0..m}, {slice1 row0..m}, ..., {sliceN row0..m} with each row * storead as {row0 column0..m}, {row1 column0..m}, ..., {rown column0..m} */ protected int[] elements; /** * Constructs a matrix with a copy of the given values. values is * required to have the form values[slice][row][column] and have * exactly the same number of rows in in every slice and exactly the same * number of columns in in every row. *

* The values are copied. So subsequent changes in values are not * reflected in the matrix, and vice-versa. * * @param values * The values to be filled into the new matrix. * @throws IllegalArgumentException * if * for any 1 <= slice < values.length: values[slice].length != values[slice-1].length * . * @throws IllegalArgumentException * if * for any 1 <= row < values[0].length: values[slice][row].length != values[slice][row-1].length * . */ public DenseIntMatrix3D(int[][][] values) { this(values.length, (values.length == 0 ? 0 : values[0].length), (values.length == 0 ? 0 : values[0].length == 0 ? 0 : values[0][0].length)); assign(values); } /** * Constructs a matrix with a given number of slices, rows and columns. All * entries are initially 0. * * @param slices * the number of slices the matrix shall have. * @param rows * the number of rows the matrix shall have. * @param columns * the number of columns the matrix shall have. * @throws IllegalArgumentException * if (int)slices*columns*rows > Int.MAX_VALUE. * @throws IllegalArgumentException * if slices<0 || rows<0 || columns<0. */ public DenseIntMatrix3D(int slices, int rows, int columns) { setUp(slices, rows, columns); this.elements = new int[slices * rows * columns]; } /** * Constructs a view with the given parameters. * * @param slices * the number of slices the matrix shall have. * @param rows * the number of rows the matrix shall have. * @param columns * the number of columns the matrix shall have. * @param elements * the cells. * @param sliceZero * the position of the first element. * @param rowZero * the position of the first element. * @param columnZero * the position of the first element. * @param sliceStride * the number of elements between two slices, i.e. * index(k+1,i,j)-index(k,i,j). * @param rowStride * the number of elements between two rows, i.e. * index(k,i+1,j)-index(k,i,j). * @param columnStride * the number of elements between two columns, i.e. * index(k,i,j+1)-index(k,i,j). * @param isView * if true then a matrix view is constructed * @throws IllegalArgumentException * if (int)slices*columns*rows > Int.MAX_VALUE. * @throws IllegalArgumentException * if slices<0 || rows<0 || columns<0. */ public DenseIntMatrix3D(int slices, int rows, int columns, int[] elements, int sliceZero, int rowZero, int columnZero, int sliceStride, int rowStride, int columnStride, boolean isView) { setUp(slices, rows, columns, sliceZero, rowZero, columnZero, sliceStride, rowStride, columnStride); this.elements = elements; this.isNoView = !isView; } public int aggregate(final cern.colt.function.tint.IntIntFunction aggr, final cern.colt.function.tint.IntFunction f) { if (size() == 0) throw new IllegalArgumentException("size == 0"); int a = 0; final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int a = f.apply(elements[zero + firstSlice * sliceStride]); int d = 1; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { a = aggr.apply(a, f.apply(elements[zero + s * sliceStride + r * rowStride + c * columnStride])); } d = 0; } } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(elements[zero]); int d = 1; // first cell already done for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { a = aggr.apply(a, f.apply(elements[zero + s * sliceStride + r * rowStride + c * columnStride])); } d = 0; } } } return a; } public int aggregate(final cern.colt.function.tint.IntIntFunction aggr, final cern.colt.function.tint.IntFunction f, final cern.colt.function.tint.IntProcedure cond) { if (size() == 0) throw new IllegalArgumentException("size == 0"); int a = 0; final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (slices * rows * columns >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int elem = elements[zero + firstSlice * sliceStride]; int a = 0; if (cond.apply(elem) == true) { a = aggr.apply(a, f.apply(elem)); } int d = 1; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { elem = elements[zero + s * sliceStride + r * rowStride + c * columnStride]; if (cond.apply(elem) == true) { a = aggr.apply(a, f.apply(elem)); } d = 0; } } } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { int elem = elements[zero]; if (cond.apply(elem) == true) { a = aggr.apply(a, f.apply(elem)); } int d = 1; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { elem = elements[zero + s * sliceStride + r * rowStride + c * columnStride]; if (cond.apply(elem) == true) { a = aggr.apply(a, f.apply(elem)); } d = 0; } } } } return a; } public int aggregate(final cern.colt.function.tint.IntIntFunction aggr, final cern.colt.function.tint.IntFunction f, final IntArrayList sliceList, final IntArrayList rowList, final IntArrayList columnList) { if (size() == 0) throw new IllegalArgumentException("size == 0"); if (sliceList.size() == 0 || rowList.size() == 0 || columnList.size() == 0) throw new IllegalArgumentException("size == 0"); final int size = sliceList.size(); final int[] sliceElements = sliceList.elements(); final int[] rowElements = rowList.elements(); final int[] columnElements = columnList.elements(); final int zero = (int) index(0, 0, 0); int a = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, size); Future[] futures = new Future[nthreads]; int k = size / nthreads; for (int j = 0; j < nthreads; j++) { final int firstIdx = j * k; final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int a = f.apply(elements[zero + sliceElements[firstIdx] * sliceStride + rowElements[firstIdx] * rowStride + columnElements[firstIdx] * columnStride]); int elem; for (int i = firstIdx + 1; i < lastIdx; i++) { elem = elements[zero + sliceElements[i] * sliceStride + rowElements[i] * rowStride + columnElements[i] * columnStride]; a = aggr.apply(a, f.apply(elem)); } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(elements[zero + sliceElements[0] * sliceStride + rowElements[0] * rowStride + columnElements[0] * columnStride]); int elem; for (int i = 1; i < size; i++) { elem = elements[zero + sliceElements[i] * sliceStride + rowElements[i] * rowStride + columnElements[i] * columnStride]; a = aggr.apply(a, f.apply(elem)); } } return a; } public int aggregate(final IntMatrix3D other, final cern.colt.function.tint.IntIntFunction aggr, final cern.colt.function.tint.IntIntFunction f) { if (!(other instanceof DenseIntMatrix3D)) { return super.aggregate(other, aggr, f); } checkShape(other); if (size() == 0) throw new IllegalArgumentException("size == 0"); int a = 0; final int zero = (int) index(0, 0, 0); final int zeroOther = (int) other.index(0, 0, 0); final int sliceStrideOther = other.sliceStride(); final int rowStrideOther = other.rowStride(); final int colStrideOther = other.columnStride(); final int[] elemsOther = (int[]) other.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int idx = zero + firstSlice * sliceStride; int idxOther = zeroOther + firstSlice * sliceStrideOther; int a = f.apply(elements[idx], elemsOther[idxOther]); int d = 1; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { idx = zero + s * sliceStride + r * rowStride + c * columnStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther + c * colStrideOther; a = aggr.apply(a, f.apply(elements[idx], elemsOther[idxOther])); } d = 0; } } return a; } }); } a = ConcurrencyUtils.waitForCompletion(futures, aggr); } else { a = f.apply(getQuick(0, 0, 0), other.getQuick(0, 0, 0)); int d = 1; // first cell already done int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { idx = zero + s * sliceStride + r * rowStride + c * columnStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther + c * colStrideOther; a = aggr.apply(a, f.apply(elements[idx], elemsOther[idxOther])); } d = 0; } } } return a; } public IntMatrix3D assign(final cern.colt.function.tint.IntFunction function) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = function.apply(elements[idx]); idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = function.apply(elements[idx]); idx += columnStride; } } } } return this; } public IntMatrix3D assign(final int value) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = value; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = value; idx += columnStride; } } } } return this; } public IntMatrix3D assign(final int[] values) { if (values.length != size()) throw new IllegalArgumentException("Must have same length: length=" + values.length + "slices()*rows()*columns()=" + slices() * rows() * columns()); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView) { System.arraycopy(values, 0, this.elements, 0, values.length); } else { final int zero = (int) index(0, 0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idxOther = firstSlice * rows * columns; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = values[idxOther++]; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idxOther = 0; int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elements[idx] = values[idxOther++]; idx += columnStride; } } } } } return this; } public IntMatrix3D assign(final int[][][] values) { if (values.length != slices) throw new IllegalArgumentException("Must have same number of slices: slices=" + values.length + "slices()=" + slices()); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView) { if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int i = firstSlice * sliceStride; for (int s = firstSlice; s < lastSlice; s++) { int[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException( "Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { int[] currentRow = currentSlice[r]; if (currentRow.length != columns) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "columns()=" + columns()); System.arraycopy(currentRow, 0, elements, i, columns); i += columns; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int i = 0; for (int s = 0; s < slices; s++) { int[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException("Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { int[] currentRow = currentSlice[r]; if (currentRow.length != columns) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "columns()=" + columns()); System.arraycopy(currentRow, 0, this.elements, i, columns); i += columns; } } } } else { final int zero = (int) index(0, 0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { int[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException( "Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; int[] currentRow = currentSlice[r]; if (currentRow.length != columns) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "columns()=" + columns()); for (int c = 0; c < columns; c++) { elements[idx] = currentRow[c]; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { int[][] currentSlice = values[s]; if (currentSlice.length != rows) throw new IllegalArgumentException("Must have same number of rows in every slice: rows=" + currentSlice.length + "rows()=" + rows()); for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; int[] currentRow = currentSlice[r]; if (currentRow.length != columns) throw new IllegalArgumentException( "Must have same number of columns in every row: columns=" + currentRow.length + "columns()=" + columns()); for (int c = 0; c < columns; c++) { elements[idx] = currentRow[c]; idx += columnStride; } } } } } return this; } public IntMatrix3D assign(final cern.colt.function.tint.IntProcedure cond, final cern.colt.function.tint.IntFunction f) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (slices * rows * columns >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int elem; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem = elements[idx]; if (cond.apply(elem) == true) { elements[idx] = f.apply(elem); } idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int elem; int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem = elements[idx]; if (cond.apply(elem) == true) { elements[idx] = f.apply(elem); } idx += columnStride; } } } } return this; } public IntMatrix3D assign(final cern.colt.function.tint.IntProcedure cond, final int value) { final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (slices * rows * columns >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int elem; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem = elements[idx]; if (cond.apply(elem) == true) { elements[idx] = value; } idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int elem; int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { elem = elements[idx]; if (cond.apply(elem) == true) { elements[idx] = value; } idx += columnStride; } } } } return this; } public IntMatrix3D assign(IntMatrix3D source) { // overriden for performance only if (!(source instanceof DenseIntMatrix3D)) { super.assign(source); return this; } DenseIntMatrix3D other = (DenseIntMatrix3D) source; if (other == this) return this; checkShape(other); if (haveSharedCells(other)) { IntMatrix3D c = other.copy(); if (!(c instanceof DenseIntMatrix3D)) { // should not happen super.assign(source); return this; } other = (DenseIntMatrix3D) c; } final DenseIntMatrix3D other_final = other; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (this.isNoView && other.isNoView) { // quickest System.arraycopy(other_final.elements, 0, this.elements, 0, this.elements.length); return this; } else { final int zero = (int) index(0, 0, 0); final int zeroOther = (int) other_final.index(0, 0, 0); final int sliceStrideOther = other_final.sliceStride; final int rowStrideOther = other_final.rowStride; final int columnStrideOther = other_final.columnStride; final int[] elemsOther = other_final.elements; if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = elemsOther[idxOther]; idx += columnStride; idxOther += columnStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = elemsOther[idxOther]; idx += columnStride; idxOther += columnStrideOther; } } } } return this; } } public IntMatrix3D assign(final IntMatrix3D y, final cern.colt.function.tint.IntIntFunction function) { if (!(y instanceof DenseIntMatrix3D)) { super.assign(y, function); return this; } checkShape(y); final int zero = (int) index(0, 0, 0); final int zeroOther = (int) y.index(0, 0, 0); final int sliceStrideOther = y.sliceStride(); final int rowStrideOther = y.rowStride(); final int columnStrideOther = y.columnStride(); final int[] elemsOther = (int[]) y.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; int idxOther; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = function.apply(elements[idx], elemsOther[idxOther]); idx += columnStride; idxOther += columnStrideOther; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; int idxOther; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; idxOther = zeroOther + s * sliceStrideOther + r * rowStrideOther; for (int c = 0; c < columns; c++) { elements[idx] = function.apply(elements[idx], elemsOther[idxOther]); idx += columnStride; idxOther += columnStrideOther; } } } } return this; } public IntMatrix3D assign(final IntMatrix3D y, final cern.colt.function.tint.IntIntFunction function, final IntArrayList sliceList, final IntArrayList rowList, final IntArrayList columnList) { if (!(y instanceof DenseIntMatrix3D)) { super.assign(y, function); return this; } checkShape(y); final int zero = (int) index(0, 0, 0); final int zeroOther = (int) y.index(0, 0, 0); final int sliceStrideOther = y.sliceStride(); final int rowStrideOther = y.rowStride(); final int columnStrideOther = y.columnStride(); final int[] elemsOther = (int[]) y.elements(); int size = sliceList.size(); final int[] sliceElements = sliceList.elements(); final int[] rowElements = rowList.elements(); final int[] columnElements = columnList.elements(); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, size); Future[] futures = new Future[nthreads]; int k = size / nthreads; for (int j = 0; j < nthreads; j++) { final int firstIdx = j * k; final int lastIdx = (j == nthreads - 1) ? size : firstIdx + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstIdx; i < lastIdx; i++) { int idx = zero + sliceElements[i] * sliceStride + rowElements[i] * rowStride + columnElements[i] * columnStride; int idxOther = zeroOther + sliceElements[i] * sliceStrideOther + rowElements[i] * rowStrideOther + columnElements[i] * columnStrideOther; elements[idx] = function.apply(elements[idx], elemsOther[idxOther]); } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < size; i++) { int idx = zero + sliceElements[i] * sliceStride + rowElements[i] * rowStride + columnElements[i] * columnStride; int idxOther = zeroOther + sliceElements[i] * sliceStrideOther + rowElements[i] * rowStrideOther + columnElements[i] * columnStrideOther; elements[idx] = function.apply(elements[idx], elemsOther[idxOther]); } } return this; } public int cardinality() { int cardinality = 0; final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; Integer[] results = new Integer[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int cardinality = 0; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { if (elements[idx] != 0) { cardinality++; } idx += columnStride; } } } return cardinality; } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (Integer) futures[j].get(); } cardinality = results[0]; for (int j = 1; j < nthreads; j++) { cardinality += results[j]; } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { if (elements[idx] != 0) { cardinality++; } idx += columnStride; } } } } return cardinality; } public int[] elements() { return elements; } public void getNegativeValues(final IntArrayList sliceList, final IntArrayList rowList, final IntArrayList columnList, final IntArrayList valueList) { sliceList.clear(); rowList.clear(); columnList.clear(); valueList.clear(); int zero = (int) index(0, 0, 0); int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { int value = elements[idx]; if (value < 0) { sliceList.add(s); rowList.add(r); columnList.add(c); valueList.add(value); } idx += columnStride; } } } } public void getNonZeros(final IntArrayList sliceList, final IntArrayList rowList, final IntArrayList columnList, final IntArrayList valueList) { sliceList.clear(); rowList.clear(); columnList.clear(); valueList.clear(); int zero = (int) index(0, 0, 0); int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { int value = elements[idx]; if (value != 0) { sliceList.add(s); rowList.add(r); columnList.add(c); valueList.add(value); } idx += columnStride; } } } } public void getPositiveValues(final IntArrayList sliceList, final IntArrayList rowList, final IntArrayList columnList, final IntArrayList valueList) { sliceList.clear(); rowList.clear(); columnList.clear(); valueList.clear(); int zero = (int) index(0, 0, 0); int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { int value = elements[idx]; if (value > 0) { sliceList.add(s); rowList.add(r); columnList.add(c); valueList.add(value); } idx += columnStride; } } } } public int getQuick(int slice, int row, int column) { return elements[sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride]; } public long index(int slice, int row, int column) { return sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride; } public IntMatrix3D like(int slices, int rows, int columns) { return new DenseIntMatrix3D(slices, rows, columns); } public IntMatrix2D like2D(int rows, int columns) { return new DenseIntMatrix2D(rows, columns); } public int[] getMaxLocation() { final int zero = (int) index(0, 0, 0); int slice_loc = 0; int row_loc = 0; int col_loc = 0; int maxValue = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int[][] results = new int[nthreads][2]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public int[] call() throws Exception { int slice_loc = firstSlice; int row_loc = 0; int col_loc = 0; int maxValue = elements[zero + firstSlice * sliceStride]; int d = 1; int elem; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { elem = elements[zero + s * sliceStride + r * rowStride + c * columnStride]; if (maxValue < elem) { maxValue = elem; slice_loc = s; row_loc = r; col_loc = c; } } d = 0; } } return new int[] { maxValue, slice_loc, row_loc, col_loc }; } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (int[]) futures[j].get(); } maxValue = results[0][0]; slice_loc = (int) results[0][1]; row_loc = (int) results[0][2]; col_loc = (int) results[0][3]; for (int j = 1; j < nthreads; j++) { if (maxValue < results[j][0]) { maxValue = results[j][0]; slice_loc = (int) results[j][1]; row_loc = (int) results[j][2]; col_loc = (int) results[j][3]; } } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { maxValue = elements[zero]; int elem; int d = 1; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { elem = elements[zero + s * sliceStride + r * rowStride + c * columnStride]; if (maxValue < elem) { maxValue = elem; slice_loc = s; row_loc = r; col_loc = c; } } d = 0; } } } return new int[] { maxValue, slice_loc, row_loc, col_loc }; } public int[] getMinLocation() { final int zero = (int) index(0, 0, 0); int slice_loc = 0; int row_loc = 0; int col_loc = 0; int minValue = 0; int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int[][] results = new int[nthreads][2]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public int[] call() throws Exception { int slice_loc = firstSlice; int row_loc = 0; int col_loc = 0; int minValue = elements[zero + slice_loc * sliceStride]; int d = 1; int elem; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { elem = elements[zero + s * sliceStride + r * rowStride + c * columnStride]; if (minValue > elem) { minValue = elem; slice_loc = s; row_loc = r; col_loc = c; } } d = 0; } } return new int[] { minValue, slice_loc, row_loc, col_loc }; } }); } try { for (int j = 0; j < nthreads; j++) { results[j] = (int[]) futures[j].get(); } minValue = results[0][0]; slice_loc = (int) results[0][1]; row_loc = (int) results[0][2]; col_loc = (int) results[0][3]; for (int j = 1; j < nthreads; j++) { if (minValue > results[j][0]) { minValue = results[j][0]; slice_loc = (int) results[j][1]; row_loc = (int) results[j][2]; col_loc = (int) results[j][3]; } } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { minValue = elements[zero]; int elem; int d = 1; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { for (int c = d; c < columns; c++) { elem = elements[zero + s * sliceStride + r * rowStride + c * columnStride]; if (minValue > elem) { minValue = elem; slice_loc = s; row_loc = r; col_loc = c; } } d = 0; } } } return new int[] { minValue, slice_loc, row_loc, col_loc }; } public void setQuick(int slice, int row, int column, int value) { elements[sliceZero + slice * sliceStride + rowZero + row * rowStride + columnZero + column * columnStride] = value; } public int[][][] toArray() { final int[][][] values = new int[slices][rows][columns]; int nthreads = ConcurrencyUtils.getNumberOfThreads(); final int zero = (int) index(0, 0, 0); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx; for (int s = firstSlice; s < lastSlice; s++) { int[][] currentSlice = values[s]; for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; int[] currentRow = currentSlice[r]; for (int c = 0; c < columns; c++) { currentRow[c] = elements[idx]; idx += columnStride; } } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { int idx; for (int s = 0; s < slices; s++) { int[][] currentSlice = values[s]; for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; int[] currentRow = currentSlice[r]; for (int c = 0; c < columns; c++) { currentRow[c] = elements[idx]; idx += columnStride; } } } } return values; } public IntMatrix1D vectorize() { IntMatrix1D v = new DenseIntMatrix1D((int) size()); int length = rows * columns; for (int s = 0; s < slices; s++) { v.viewPart(s * length, length).assign(viewSlice(s).vectorize()); } return v; } public int zSum() { int sum = 0; final int zero = (int) index(0, 0, 0); int nthreads = ConcurrencyUtils.getNumberOfThreads(); if ((nthreads > 1) && (size() >= ConcurrencyUtils.getThreadsBeginN_3D())) { nthreads = Math.min(nthreads, slices); Future[] futures = new Future[nthreads]; int k = slices / nthreads; for (int j = 0; j < nthreads; j++) { final int firstSlice = j * k; final int lastSlice = (j == nthreads - 1) ? slices : firstSlice + k; futures[j] = ConcurrencyUtils.submit(new Callable() { public Integer call() throws Exception { int sum = 0; int idx; for (int s = firstSlice; s < lastSlice; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { sum += elements[idx]; idx += columnStride; } } } return sum; } }); } try { for (int j = 0; j < nthreads; j++) { sum = sum + ((Integer) futures[j].get()); } } catch (ExecutionException ex) { ex.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } } else { int idx; for (int s = 0; s < slices; s++) { for (int r = 0; r < rows; r++) { idx = zero + s * sliceStride + r * rowStride; for (int c = 0; c < columns; c++) { sum += elements[idx]; idx += columnStride; } } } } return sum; } protected boolean haveSharedCellsRaw(IntMatrix3D other) { if (other instanceof SelectedDenseIntMatrix3D) { SelectedDenseIntMatrix3D otherMatrix = (SelectedDenseIntMatrix3D) other; return this.elements == otherMatrix.elements; } else if (other instanceof DenseIntMatrix3D) { DenseIntMatrix3D otherMatrix = (DenseIntMatrix3D) other; return this.elements == otherMatrix.elements; } return false; } protected IntMatrix2D like2D(int rows, int columns, int rowZero, int columnZero, int rowStride, int columnStride) { return new DenseIntMatrix2D(rows, columns, this.elements, rowZero, columnZero, rowStride, columnStride, true); } protected IntMatrix3D viewSelectionLike(int[] sliceOffsets, int[] rowOffsets, int[] columnOffsets) { return new SelectedDenseIntMatrix3D(this.elements, sliceOffsets, rowOffsets, columnOffsets, 0); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy