cern.colt.matrix.tobject.impl.SparseCCMObjectMatrix2D Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.colt.matrix.tobject.impl;
import cern.colt.matrix.tobject.ObjectMatrix2D;
/**
* Sparse column-compressed-modified 2-d matrix holding Object elements.
* Each column is stored as SparseObjectMatrix1D.
*
* @author Piotr Wendykier ([email protected])
*
*/
public class SparseCCMObjectMatrix2D extends WrapperObjectMatrix2D {
private static final long serialVersionUID = 1L;
private SparseObjectMatrix1D[] elements;
/**
* Constructs a matrix with a given number of rows and columns. All entries
* are initially 0.
*
* @param rows
* the number of rows the matrix shall have.
* @param columns
* the number of columns the matrix shall have.
* @throws IllegalArgumentException
* if
* rows<0 || columns<0 || (double)columns*rows > Integer.MAX_VALUE
* .
*/
public SparseCCMObjectMatrix2D(int rows, int columns) {
super(null);
try {
setUp(rows, columns);
} catch (IllegalArgumentException exc) { // we can hold rows*columns>Integer.MAX_VALUE cells !
if (!"matrix too large".equals(exc.getMessage()))
throw exc;
}
elements = new SparseObjectMatrix1D[columns];
for (int i = 0; i < columns; ++i)
elements[i] = new SparseObjectMatrix1D(rows);
}
public SparseObjectMatrix1D[] elements() {
return elements;
}
public Object getQuick(int row, int column) {
return elements[column].getQuick(row);
}
public void setQuick(int row, int column, Object value) {
elements[column].setQuick(row, value);
}
public void trimToSize() {
for (int c = 0; c < columns; c++) {
elements[c].trimToSize();
}
}
public SparseObjectMatrix1D viewColumn(int column) {
return elements[column];
}
protected ObjectMatrix2D getContent() {
return this;
}
public ObjectMatrix2D like(int rows, int columns) {
return new SparseCCMObjectMatrix2D(rows, columns);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy