cern.jet.random.tfloat.sampling.WeightedFloatRandomSampler Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
/*
Copyright (C) 1999 CERN - European Organization for Nuclear Research.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
is hereby granted without fee, provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear in supporting documentation.
CERN makes no representations about the suitability of this software for any purpose.
It is provided "as is" without expressed or implied warranty.
*/
package cern.jet.random.tfloat.sampling;
import cern.colt.list.tboolean.BooleanArrayList;
import cern.jet.random.tfloat.FloatUniform;
import cern.jet.random.tfloat.engine.FloatRandomEngine;
/**
* Conveniently computes a stable subsequence of elements from a given input
* sequence; Picks (samples) exactly one random element from successive blocks
* of weight input elements each. For example, if weight==2 (a block is
* 2 elements), and the input is 5*2=10 elements long, then picks 5 random
* elements from the 10 elements such that one element is randomly picked from
* the first block, one element from the second block, ..., one element from the
* last block. weight == 1.0 --> all elements are picked (sampled). weight ==
* 10.0 --> Picks one random element from successive blocks of 10 elements each.
* Etc. The subsequence is guaranteed to be stable, i.e. elements never
* change position relative to each other.
*
* @author [email protected]
* @version 1.0, 02/05/99
*/
public class WeightedFloatRandomSampler extends cern.colt.PersistentObject {
/**
*
*/
private static final long serialVersionUID = 1L;
// public class BlockedRandomSampler extends Object implements
// java.io.Serializable {
protected int skip;
protected int nextTriggerPos;
protected int nextSkip;
protected int weight;
protected FloatUniform generator;
static final int UNDEFINED = -1;
/**
* Calls BlockedRandomSampler(1,null).
*/
public WeightedFloatRandomSampler() {
this(1, null);
}
/**
* Chooses exactly one random element from successive blocks of
* weight input elements each. For example, if weight==2, and the
* input is 5*2=10 elements long, then chooses 5 random elements from the 10
* elements such that one is chosen from the first block, one from the
* second, ..., one from the last block. weight == 1.0 --> all elements are
* consumed (sampled). 10.0 --> Consumes one random element from successive
* blocks of 10 elements each. Etc.
*
* @param weight
* the weight.
* @param randomGenerator
* a random number generator. Set this parameter to null
* to use the default random number generator.
*/
public WeightedFloatRandomSampler(int weight, FloatRandomEngine randomGenerator) {
if (randomGenerator == null)
randomGenerator = cern.jet.random.tfloat.AbstractFloatDistribution.makeDefaultGenerator();
this.generator = new FloatUniform(randomGenerator);
setWeight(weight);
}
/**
* Returns a deep copy of the receiver.
*/
public Object clone() {
WeightedFloatRandomSampler copy = (WeightedFloatRandomSampler) super.clone();
copy.generator = (FloatUniform) this.generator.clone();
return copy;
}
public int getWeight() {
return this.weight;
}
/**
* Chooses exactly one random element from successive blocks of
* weight input elements each. For example, if weight==2, and the
* input is 5*2=10 elements long, then chooses 5 random elements from the 10
* elements such that one is chosen from the first block, one from the
* second, ..., one from the last block.
*
* @return true if the next element shall be sampled (picked),
* false otherwise.
*/
public boolean sampleNextElement() {
if (skip > 0) { // reject
skip--;
return false;
}
if (nextTriggerPos == UNDEFINED) {
if (weight == 1)
nextTriggerPos = 0; // tuned for speed
else
nextTriggerPos = generator.nextIntFromTo(0, weight - 1);
nextSkip = weight - 1 - nextTriggerPos;
}
if (nextTriggerPos > 0) { // reject
nextTriggerPos--;
return false;
}
// accept
nextTriggerPos = UNDEFINED;
skip = nextSkip;
return true;
}
/**
* Not yet commented.
*
* @param weight
* int
*/
public void setWeight(int weight) {
if (weight < 1)
throw new IllegalArgumentException("bad weight");
this.weight = weight;
this.skip = 0;
this.nextTriggerPos = UNDEFINED;
this.nextSkip = 0;
}
/**
* Not yet commented.
*/
public static void test(int weight, int size) {
WeightedFloatRandomSampler sampler = new WeightedFloatRandomSampler();
sampler.setWeight(weight);
cern.colt.list.tint.IntArrayList sample = new cern.colt.list.tint.IntArrayList();
for (int i = 0; i < size; i++) {
if (sampler.sampleNextElement())
sample.add(i);
}
System.out.println("Sample = " + sample);
}
/**
* Chooses exactly one random element from successive blocks of
* weight input elements each. For example, if weight==2, and the
* input is 5*2=10 elements long, then chooses 5 random elements from the 10
* elements such that one is chosen from the first block, one from the
* second, ..., one from the last block.
*
* @param acceptList
* a bitvector which will be filled with true where
* sampling shall occur and false where it shall not
* occur.
*/
private void xsampleNextElements(BooleanArrayList acceptList) {
// manually inlined
int length = acceptList.size();
boolean[] accept = acceptList.elements();
for (int i = 0; i < length; i++) {
if (skip > 0) { // reject
skip--;
accept[i] = false;
continue;
}
if (nextTriggerPos == UNDEFINED) {
if (weight == 1)
nextTriggerPos = 0; // tuned for speed
else
nextTriggerPos = generator.nextIntFromTo(0, weight - 1);
nextSkip = weight - 1 - nextTriggerPos;
}
if (nextTriggerPos > 0) { // reject
nextTriggerPos--;
accept[i] = false;
continue;
}
// accept
nextTriggerPos = UNDEFINED;
skip = nextSkip;
accept[i] = true;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy