edu.emory.mathcs.utils.MatrixMarketUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of parallelcolt Show documentation
Show all versions of parallelcolt Show documentation
Parallel Colt is a multithreaded version of Colt - a library for high performance scientific computing in Java. It contains efficient algorithms for data analysis, linear algebra, multi-dimensional arrays, Fourier transforms, statistics and histogramming.
The newest version!
/*
* Copyright (C) 2010-2012 Richard Lincoln
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
package edu.emory.mathcs.utils;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import cern.colt.matrix.AbstractMatrix;
import cern.colt.matrix.io.MatrixInfo;
import cern.colt.matrix.io.MatrixSize;
import cern.colt.matrix.io.MatrixVectorReader;
import cern.colt.matrix.tdcomplex.DComplexFactory1D;
import cern.colt.matrix.tdcomplex.DComplexFactory2D;
import cern.colt.matrix.tdcomplex.impl.DenseDComplexMatrix1D;
import cern.colt.matrix.tdcomplex.impl.DenseDComplexMatrix2D;
import cern.colt.matrix.tdcomplex.impl.SparseDComplexMatrix1D;
import cern.colt.matrix.tdcomplex.impl.SparseDComplexMatrix2D;
import cern.colt.matrix.tdouble.DoubleFactory1D;
import cern.colt.matrix.tdouble.DoubleFactory2D;
import cern.colt.matrix.tdouble.impl.DenseDoubleMatrix1D;
import cern.colt.matrix.tdouble.impl.DenseDoubleMatrix2D;
import cern.colt.matrix.tdouble.impl.SparseDoubleMatrix1D;
import cern.colt.matrix.tdouble.impl.SparseDoubleMatrix2D;
/**
* Utility class for reading data in MatrixMarket format.
*
* @author Richard Lincoln
*/
public class MatrixMarketUtils {
private static int i, j;
private static int[] row, col;
private static double[] data, dataR, dataI;
private static FileReader fileReader;
private static MatrixVectorReader reader;
private static MatrixInfo info;
private static MatrixSize size;
private static AbstractMatrix m;
/**
*
* @param uri
* @return
*/
public static AbstractMatrix readMatrix(String fileName) {
try {
fileReader = new FileReader(fileName);
reader = new MatrixVectorReader(fileReader);
info = reader.readMatrixInfo();
size = reader.readMatrixSize(info);
data = new double[size.numEntries()];
dataR = new double[size.numEntries()];
dataI = new double[size.numEntries()];
row = new int[size.numEntries()];
col = new int[size.numEntries()];
if (info.isArray()) {
if (info.isComplex()) {
try {
reader.readArray(dataR, dataI);
} catch (IOException e) {
e.printStackTrace();
}
if (info.isDense()) {
m = DComplexFactory1D.dense.make(size.numEntries());
for (i = 0; i < size.numEntries(); i++)
((DenseDComplexMatrix1D) m).setQuick(i, dataR[i], dataI[i]);
} else if (info.isSparse()) {
m = DComplexFactory1D.sparse.make(size.numEntries());
for (i = 0; i < size.numEntries(); i++)
((SparseDComplexMatrix1D) m).setQuick(i, dataR[i], dataI[i]);
} else {
throw new UnsupportedOperationException();
}
} else {
reader.readArray(data);
if (size.numRows() == 1 || size.numColumns() == 1) {
if (info.isDense()) {
m = DoubleFactory1D.dense.make(size.numEntries());
for (i = 0; i < size.numEntries(); i++)
((DenseDoubleMatrix1D) m).setQuick(i, data[i]);
} else if (info.isSparse()) {
m = DoubleFactory1D.sparse.make(size.numEntries());
for (i = 0; i < size.numEntries(); i++)
((SparseDoubleMatrix1D) m).setQuick(i, data[i]);
} else {
throw new UnsupportedOperationException();
}
} else {
if (info.isDense()) {
m = DoubleFactory2D.dense.make(size.numRows(), size.numColumns());
for (i = 0; i < size.numColumns(); i++) {
for (j = 0; j < size.numRows(); j++) {
((DenseDoubleMatrix2D) m).setQuick(j, i, data[i * size.numRows() + j]);
}
}
} else if (info.isSparse()) {
m = DoubleFactory2D.sparse.make(size.numRows(), size.numColumns());
for (i = 0; i < size.numColumns(); i++) {
for (j = 0; j < size.numRows(); j++) {
((SparseDoubleMatrix2D) m).setQuick(j, i, data[i * size.numRows() + j]);
}
}
} else {
throw new UnsupportedOperationException();
}
}
}
} else if (info.isCoordinate()) {
if (info.isComplex()) {
reader.readCoordinate(row, col, dataR, dataI);
if (info.isDense()) {
m = DComplexFactory2D.dense.make(size.numRows(), size.numColumns());
for (i = 0; i < size.numEntries(); i++) {
((DenseDComplexMatrix2D) m).setQuick(row[i], col[i], dataR[i], dataI[i]);
if (info.isSymmetric())
((DenseDComplexMatrix2D) m).setQuick(col[i], row[i], dataR[i], dataI[i]);
}
} else if (info.isSparse()) {
m = DComplexFactory2D.sparse.make(size.numRows(), size.numColumns());
for (i = 0; i < size.numEntries(); i++) {
((SparseDComplexMatrix2D) m).setQuick(row[i], col[i], dataR[i], dataI[i]);
if (info.isSymmetric())
((SparseDComplexMatrix2D) m).setQuick(col[i], row[i], dataR[i], dataI[i]);
}
} else {
throw new UnsupportedOperationException();
}
} else {
reader.readCoordinate(row, col, data);
if (info.isDense()) {
m = DoubleFactory2D.dense.make(size.numRows(), size.numColumns());
for (i = 0; i < size.numEntries(); i++) {
((DenseDoubleMatrix2D) m).setQuick(row[i], col[i], data[i]);
if (info.isSymmetric())
((DenseDoubleMatrix2D) m).setQuick(col[i], row[i], data[i]);
}
} else if (info.isSparse()) {
m = DoubleFactory2D.sparse.make(size.numRows(), size.numColumns());
for (i = 0; i < size.numEntries(); i++) {
((SparseDoubleMatrix2D) m).setQuick(row[i], col[i], data[i]);
if (info.isSymmetric()) {
((SparseDoubleMatrix2D) m).setQuick(col[i], row[i], data[i]);
}
}
} else {
throw new UnsupportedOperationException();
}
}
} else {
throw new UnsupportedOperationException();
}
fileReader.close();
reader.close();
} catch (FileNotFoundException e) {
// TODO Handle exception
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return m;
}
public static AbstractMatrix readMatrix(File file) {
return readMatrix(file.getAbsolutePath());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy