ext.plantuml.com.google.zxing.ResultPoint Maven / Gradle / Ivy
Show all versions of plantuml-gplv2 Show documentation
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
/* +=======================================================================
* |
* | PlantUML : a free UML diagram generator
* |
* +=======================================================================
*
* (C) Copyright 2009-2024, Arnaud Roques
*
* Project Info: https://plantuml.com
*
* If you like this project or if you find it useful, you can support us at:
*
* https://plantuml.com/patreon (only 1$ per month!)
* https://plantuml.com/liberapay (only 1€ per month!)
* https://plantuml.com/paypal
*
*
* PlantUML is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License V2.
*
* THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
* LICENSE ("AGREEMENT"). [GNU General Public License V2]
*
* ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
* RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.
*
* You may obtain a copy of the License at
*
* https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* PlantUML can occasionally display sponsored or advertising messages. Those
* messages are usually generated on welcome or error images and never on
* functional diagrams.
* See https://plantuml.com/professional if you want to remove them
*
* Images (whatever their format : PNG, SVG, EPS...) generated by running PlantUML
* are owned by the author of their corresponding sources code (that is, their
* textual description in PlantUML language). Those images are not covered by
* this GPL v2 license.
*
* The generated images can then be used without any reference to the GPL v2 license.
* It is not even necessary to stipulate that they have been generated with PlantUML,
* although this will be appreciated by the PlantUML team.
*
* There is an exception : if the textual description in PlantUML language is also covered
* by any license, then the generated images are logically covered
* by the very same license.
*
* This is the IGY distribution (Install GraphViz by Yourself).
* You have to install GraphViz and to setup the GRAPHVIZ_DOT environment variable
* (see https://plantuml.com/graphviz-dot )
*
* Icons provided by OpenIconic : https://useiconic.com/open
* Archimate sprites provided by Archi : http://www.archimatetool.com
* Stdlib AWS provided by https://github.com/milo-minderbinder/AWS-PlantUML
* Stdlib Icons provided https://github.com/tupadr3/plantuml-icon-font-sprites
* ASCIIMathML (c) Peter Jipsen http://www.chapman.edu/~jipsen
* ASCIIMathML (c) David Lippman http://www.pierce.ctc.edu/dlippman
* CafeUndZopfli ported by Eugene Klyuchnikov https://github.com/eustas/CafeUndZopfli
* Brotli (c) by the Brotli Authors https://github.com/google/brotli
* Themes (c) by Brett Schwarz https://github.com/bschwarz/puml-themes
* Twemoji (c) by Twitter at https://twemoji.twitter.com/
*
*/
package ext.plantuml.com.google.zxing;
/**
* Encapsulates a point of interest in an image containing a barcode. Typically, this
* would be the location of a finder pattern or the corner of the barcode, for example.
*
* @author Sean Owen
*/
public class ResultPoint {
private final float x;
private final float y;
public ResultPoint(float x, float y) {
this.x = x;
this.y = y;
}
public final float getX() {
return x;
}
public final float getY() {
return y;
}
public boolean equals(Object other) {
if (other instanceof ResultPoint) {
ResultPoint otherPoint = (ResultPoint) other;
return x == otherPoint.x && y == otherPoint.y;
}
return false;
}
public int hashCode() {
return 31 * Float.floatToIntBits(x) + Float.floatToIntBits(y);
}
public String toString() {
StringBuilder result = new StringBuilder(25);
result.append('(');
result.append(x);
result.append(',');
result.append(y);
result.append(')');
return result.toString();
}
/**
* Orders an array of three ResultPoints in an order [A,B,C] such that AB is less than AC
* and BC is less than AC and the angle between BC and BA is less than 180 degrees.
*/
public static void orderBestPatterns(ResultPoint[] patterns) {
// Find distances between pattern centers
float zeroOneDistance = distance(patterns[0], patterns[1]);
float oneTwoDistance = distance(patterns[1], patterns[2]);
float zeroTwoDistance = distance(patterns[0], patterns[2]);
ResultPoint pointA, pointB, pointC;
// Assume one closest to other two is B; A and C will just be guesses at first
if (oneTwoDistance >= zeroOneDistance && oneTwoDistance >= zeroTwoDistance) {
pointB = patterns[0];
pointA = patterns[1];
pointC = patterns[2];
} else if (zeroTwoDistance >= oneTwoDistance && zeroTwoDistance >= zeroOneDistance) {
pointB = patterns[1];
pointA = patterns[0];
pointC = patterns[2];
} else {
pointB = patterns[2];
pointA = patterns[0];
pointC = patterns[1];
}
// Use cross product to figure out whether A and C are correct or flipped.
// This asks whether BC x BA has a positive z component, which is the arrangement
// we want for A, B, C. If it's negative, then we've got it flipped around and
// should swap A and C.
if (crossProductZ(pointA, pointB, pointC) < 0.0f) {
ResultPoint temp = pointA;
pointA = pointC;
pointC = temp;
}
patterns[0] = pointA;
patterns[1] = pointB;
patterns[2] = pointC;
}
/**
* @return distance between two points
*/
public static float distance(ResultPoint pattern1, ResultPoint pattern2) {
float xDiff = pattern1.getX() - pattern2.getX();
float yDiff = pattern1.getY() - pattern2.getY();
return (float) Math.sqrt((double) (xDiff * xDiff + yDiff * yDiff));
}
/**
* Returns the z component of the cross product between vectors BC and BA.
*/
private static float crossProductZ(ResultPoint pointA, ResultPoint pointB, ResultPoint pointC) {
float bX = pointB.x;
float bY = pointB.y;
return ((pointC.x - bX) * (pointA.y - bY)) - ((pointC.y - bY) * (pointA.x - bX));
}
}