All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sourceforge.plantuml.brotli.Huffman Maven / Gradle / Ivy

There is a newer version: 1.2024.8
Show newest version
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
/* +=======================================================================
 * |
 * |      PlantUML : a free UML diagram generator
 * |
 * +=======================================================================
 *
 * (C) Copyright 2009-2024, Arnaud Roques
 *
 * Project Info:  https://plantuml.com
 *
 * If you like this project or if you find it useful, you can support us at:
 *
 * https://plantuml.com/patreon (only 1$ per month!)
 * https://plantuml.com/liberapay (only 1€ per month!)
 * https://plantuml.com/paypal
 *
 *
 * PlantUML is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License V2.
 *
 * THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
 * LICENSE ("AGREEMENT"). [GNU General Public License V2]
 *
 * ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
 * RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.
 *
 * You may obtain a copy of the License at
 *
 * https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * PlantUML can occasionally display sponsored or advertising messages. Those
 * messages are usually generated on welcome or error images and never on
 * functional diagrams.
 * See https://plantuml.com/professional if you want to remove them
 *
 * Images (whatever their format : PNG, SVG, EPS...) generated by running PlantUML
 * are owned by the author of their corresponding sources code (that is, their
 * textual description in PlantUML language). Those images are not covered by
 * this GPL v2 license.
 *
 * The generated images can then be used without any reference to the GPL v2 license.
 * It is not even necessary to stipulate that they have been generated with PlantUML,
 * although this will be appreciated by the PlantUML team.
 *
 * There is an exception : if the textual description in PlantUML language is also covered
 * by any license, then the generated images are logically covered
 * by the very same license.
 *
 * This is the IGY distribution (Install GraphViz by Yourself).
 * You have to install GraphViz and to setup the GRAPHVIZ_DOT environment variable
 * (see https://plantuml.com/graphviz-dot )
 *
 * Icons provided by OpenIconic :  https://useiconic.com/open
 * Archimate sprites provided by Archi :  http://www.archimatetool.com
 * Stdlib AWS provided by https://github.com/milo-minderbinder/AWS-PlantUML
 * Stdlib Icons provided https://github.com/tupadr3/plantuml-icon-font-sprites
 * ASCIIMathML (c) Peter Jipsen http://www.chapman.edu/~jipsen
 * ASCIIMathML (c) David Lippman http://www.pierce.ctc.edu/dlippman
 * CafeUndZopfli ported by Eugene Klyuchnikov https://github.com/eustas/CafeUndZopfli
 * Brotli (c) by the Brotli Authors https://github.com/google/brotli
 * Themes (c) by Brett Schwarz https://github.com/bschwarz/puml-themes
 * Twemoji (c) by Twitter at https://twemoji.twitter.com/
 *
 */

package net.sourceforge.plantuml.brotli;

/**
 * Utilities for building Huffman decoding tables.
 */
final class Huffman {

	private static final int MAX_LENGTH = 15;

	/**
	 * Returns reverse(reverse(key, len) + 1, len).
	 *
	 * 

* reverse(key, len) is the bit-wise reversal of the len least significant bits * of key. */ private static int getNextKey(int key, int len) { int step = 1 << (len - 1); while ((key & step) != 0) { step >>= 1; } return (key & (step - 1)) + step; } /** * Stores {@code item} in * {@code table[0], table[step], table[2 * step] .., table[end]}. * *

* Assumes that end is an integer multiple of step. */ private static void replicateValue(int[] table, int offset, int step, int end, int item) { do { end -= step; table[offset + end] = item; } while (end > 0); } /** * @param count histogram of bit lengths for the remaining symbols, * @param len code length of the next processed symbol. * @return table width of the next 2nd level table. */ private static int nextTableBitSize(int[] count, int len, int rootBits) { int left = 1 << (len - rootBits); while (len < MAX_LENGTH) { left -= count[len]; if (left <= 0) { break; } len++; left <<= 1; } return len - rootBits; } /** * Builds Huffman lookup table assuming code lengths are in symbol order. */ static void buildHuffmanTable(int[] rootTable, int tableOffset, int rootBits, int[] codeLengths, int codeLengthsSize) { int key; // Reversed prefix code. int[] sorted = new int[codeLengthsSize]; // Symbols sorted by code length. // TODO: fill with zeroes? int[] count = new int[MAX_LENGTH + 1]; // Number of codes of each length. int[] offset = new int[MAX_LENGTH + 1]; // Offsets in sorted table for each length. int symbol; // Build histogram of code lengths. for (symbol = 0; symbol < codeLengthsSize; symbol++) { count[codeLengths[symbol]]++; } // Generate offsets into sorted symbol table by code length. offset[1] = 0; for (int len = 1; len < MAX_LENGTH; len++) { offset[len + 1] = offset[len] + count[len]; } // Sort symbols by length, by symbol order within each length. for (symbol = 0; symbol < codeLengthsSize; symbol++) { if (codeLengths[symbol] != 0) { sorted[offset[codeLengths[symbol]]++] = symbol; } } int tableBits = rootBits; int tableSize = 1 << tableBits; int totalSize = tableSize; // Special case code with only one value. if (offset[MAX_LENGTH] == 1) { for (key = 0; key < totalSize; key++) { rootTable[tableOffset + key] = sorted[0]; } return; } // Fill in root table. key = 0; symbol = 0; for (int len = 1, step = 2; len <= rootBits; len++, step <<= 1) { for (; count[len] > 0; count[len]--) { replicateValue(rootTable, tableOffset + key, step, tableSize, len << 16 | sorted[symbol++]); key = getNextKey(key, len); } } // Fill in 2nd level tables and add pointers to root table. int mask = totalSize - 1; int low = -1; int currentOffset = tableOffset; for (int len = rootBits + 1, step = 2; len <= MAX_LENGTH; len++, step <<= 1) { for (; count[len] > 0; count[len]--) { if ((key & mask) != low) { currentOffset += tableSize; tableBits = nextTableBitSize(count, len, rootBits); tableSize = 1 << tableBits; totalSize += tableSize; low = key & mask; rootTable[tableOffset + low] = (tableBits + rootBits) << 16 | (currentOffset - tableOffset - low); } replicateValue(rootTable, currentOffset + (key >> rootBits), step, tableSize, (len - rootBits) << 16 | sorted[symbol++]); key = getNextKey(key, len); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy