All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sourceforge.plantuml.asciiart.Wcwidth Maven / Gradle / Ivy

There is a newer version: 1.2024.8
Show newest version
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
/* +=======================================================================
 * |
 * |      PlantUML : a free UML diagram generator
 * |
 * +=======================================================================
 *
 * (C) Copyright 2009-2024, Arnaud Roques
 *
 * Project Info:  https://plantuml.com
 *
 * If you like this project or if you find it useful, you can support us at:
 *
 * https://plantuml.com/patreon (only 1$ per month!)
 * https://plantuml.com/liberapay (only 1€ per month!)
 * https://plantuml.com/paypal
 *
 *
 * PlantUML is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License V2.
 *
 * THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
 * LICENSE ("AGREEMENT"). [GNU General Public License V2]
 *
 * ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
 * RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.
 *
 * You may obtain a copy of the License at
 *
 * https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * PlantUML can occasionally display sponsored or advertising messages. Those
 * messages are usually generated on welcome or error images and never on
 * functional diagrams.
 * See https://plantuml.com/professional if you want to remove them
 *
 * Images (whatever their format : PNG, SVG, EPS...) generated by running PlantUML
 * are owned by the author of their corresponding sources code (that is, their
 * textual description in PlantUML language). Those images are not covered by
 * this GPL v2 license.
 *
 * The generated images can then be used without any reference to the GPL v2 license.
 * It is not even necessary to stipulate that they have been generated with PlantUML,
 * although this will be appreciated by the PlantUML team.
 *
 * There is an exception : if the textual description in PlantUML language is also covered
 * by any license, then the generated images are logically covered
 * by the very same license.
 *
 * This is the IGY distribution (Install GraphViz by Yourself).
 * You have to install GraphViz and to setup the GRAPHVIZ_DOT environment variable
 * (see https://plantuml.com/graphviz-dot )
 *
 * Icons provided by OpenIconic :  https://useiconic.com/open
 * Archimate sprites provided by Archi :  http://www.archimatetool.com
 * Stdlib AWS provided by https://github.com/milo-minderbinder/AWS-PlantUML
 * Stdlib Icons provided https://github.com/tupadr3/plantuml-icon-font-sprites
 * ASCIIMathML (c) Peter Jipsen http://www.chapman.edu/~jipsen
 * ASCIIMathML (c) David Lippman http://www.pierce.ctc.edu/dlippman
 * CafeUndZopfli ported by Eugene Klyuchnikov https://github.com/eustas/CafeUndZopfli
 * Brotli (c) by the Brotli Authors https://github.com/google/brotli
 * Themes (c) by Brett Schwarz https://github.com/bschwarz/puml-themes
 * Twemoji (c) by Twitter at https://twemoji.twitter.com/
 *
 */
/**
 * Source code provided by Yasuhiro Matsumoto.
 * See:
 * https://github.com/plantuml/plantuml/issues/74
 * 
 * Many thanks for his help!
 */
/**
 * 

See wcwidth.c

* *

This is an implementation of wcwidth() and wcswidth() (defined in * IEEE Std 1002.1-2001) for Unicode.

* * http://www.opengroup.org/onlinepubs/007904975/functions/wcwidth.html * http://www.opengroup.org/onlinepubs/007904975/functions/wcswidth.html * *

In fixed-width output devices, Latin characters all occupy a single * "cell" position of equal width, whereas ideographic CJK characters * occupy two such cells. Interoperability between terminal-line * applications and (teletype-style) character terminals using the * UTF-8 encoding requires agreement on which character should advance * the cursor by how many cell positions. No established formal * standards exist at present on which Unicode character shall occupy * how many cell positions on character terminals. These routines are * a first attempt of defining such behavior based on simple rules * applied to data provided by the Unicode Consortium.

* *

For some graphical characters, the Unicode standard explicitly * defines a character-cell width via the definition of the East Asian * FullWidth (F), Wide (W), Half-width (H), and Narrow (Na) classes. * In all these cases, there is no ambiguity about which width a * terminal shall use. For characters in the East Asian Ambiguous (A) * class, the width choice depends purely on a preference of backward * compatibility with either historic CJK or Western practice. * Choosing single-width for these characters is easy to justify as * the appropriate long-term solution, as the CJK practice of * displaying these characters as double-width comes from historic * implementation simplicity (8-bit encoded characters were displayed * single-width and 16-bit ones double-width, even for Greek, * Cyrillic, etc.) and not any typographic considerations.

* *

Much less clear is the choice of width for the Not East Asian * (Neutral) class. Existing practice does not dictate a width for any * of these characters. It would nevertheless make sense * typographically to allocate two character cells to characters such * as for instance EM SPACE or VOLUME INTEGRAL, which cannot be * represented adequately with a single-width glyph. The following * routines at present merely assign a single-cell width to all * neutral characters, in the interest of simplicity. This is not * entirely satisfactory and should be reconsidered before * establishing a formal standard in this area. At the moment, the * decision which Not East Asian (Neutral) characters should be * represented by double-width glyphs cannot yet be answered by * applying a simple rule from the Unicode database content. Setting * up a proper standard for the behavior of UTF-8 character terminals * will require a careful analysis not only of each Unicode character, * but also of each presentation form, something the author of these * routines has avoided to do so far.

* *

http://www.unicode.org/unicode/reports/tr11/

*/ package net.sourceforge.plantuml.asciiart; public class Wcwidth { /** * sorted list of non-overlapping intervals of non-spacing characters generated * by "uniset +cat=Me +cat=Mn +cat=Cf -00AD +1160-11FF +200B c" */ private static final int[][] COMBINING = { { 0x0300, 0x036F }, { 0x0483, 0x0486 }, { 0x0488, 0x0489 }, { 0x0591, 0x05BD }, { 0x05BF, 0x05BF }, { 0x05C1, 0x05C2 }, { 0x05C4, 0x05C5 }, { 0x05C7, 0x05C7 }, { 0x0600, 0x0603 }, { 0x0610, 0x0615 }, { 0x064B, 0x065E }, { 0x0670, 0x0670 }, { 0x06D6, 0x06E4 }, { 0x06E7, 0x06E8 }, { 0x06EA, 0x06ED }, { 0x070F, 0x070F }, { 0x0711, 0x0711 }, { 0x0730, 0x074A }, { 0x07A6, 0x07B0 }, { 0x07EB, 0x07F3 }, { 0x0901, 0x0902 }, { 0x093C, 0x093C }, { 0x0941, 0x0948 }, { 0x094D, 0x094D }, { 0x0951, 0x0954 }, { 0x0962, 0x0963 }, { 0x0981, 0x0981 }, { 0x09BC, 0x09BC }, { 0x09C1, 0x09C4 }, { 0x09CD, 0x09CD }, { 0x09E2, 0x09E3 }, { 0x0A01, 0x0A02 }, { 0x0A3C, 0x0A3C }, { 0x0A41, 0x0A42 }, { 0x0A47, 0x0A48 }, { 0x0A4B, 0x0A4D }, { 0x0A70, 0x0A71 }, { 0x0A81, 0x0A82 }, { 0x0ABC, 0x0ABC }, { 0x0AC1, 0x0AC5 }, { 0x0AC7, 0x0AC8 }, { 0x0ACD, 0x0ACD }, { 0x0AE2, 0x0AE3 }, { 0x0B01, 0x0B01 }, { 0x0B3C, 0x0B3C }, { 0x0B3F, 0x0B3F }, { 0x0B41, 0x0B43 }, { 0x0B4D, 0x0B4D }, { 0x0B56, 0x0B56 }, { 0x0B82, 0x0B82 }, { 0x0BC0, 0x0BC0 }, { 0x0BCD, 0x0BCD }, { 0x0C3E, 0x0C40 }, { 0x0C46, 0x0C48 }, { 0x0C4A, 0x0C4D }, { 0x0C55, 0x0C56 }, { 0x0CBC, 0x0CBC }, { 0x0CBF, 0x0CBF }, { 0x0CC6, 0x0CC6 }, { 0x0CCC, 0x0CCD }, { 0x0CE2, 0x0CE3 }, { 0x0D41, 0x0D43 }, { 0x0D4D, 0x0D4D }, { 0x0DCA, 0x0DCA }, { 0x0DD2, 0x0DD4 }, { 0x0DD6, 0x0DD6 }, { 0x0E31, 0x0E31 }, { 0x0E34, 0x0E3A }, { 0x0E47, 0x0E4E }, { 0x0EB1, 0x0EB1 }, { 0x0EB4, 0x0EB9 }, { 0x0EBB, 0x0EBC }, { 0x0EC8, 0x0ECD }, { 0x0F18, 0x0F19 }, { 0x0F35, 0x0F35 }, { 0x0F37, 0x0F37 }, { 0x0F39, 0x0F39 }, { 0x0F71, 0x0F7E }, { 0x0F80, 0x0F84 }, { 0x0F86, 0x0F87 }, { 0x0F90, 0x0F97 }, { 0x0F99, 0x0FBC }, { 0x0FC6, 0x0FC6 }, { 0x102D, 0x1030 }, { 0x1032, 0x1032 }, { 0x1036, 0x1037 }, { 0x1039, 0x1039 }, { 0x1058, 0x1059 }, { 0x1160, 0x11FF }, { 0x135F, 0x135F }, { 0x1712, 0x1714 }, { 0x1732, 0x1734 }, { 0x1752, 0x1753 }, { 0x1772, 0x1773 }, { 0x17B4, 0x17B5 }, { 0x17B7, 0x17BD }, { 0x17C6, 0x17C6 }, { 0x17C9, 0x17D3 }, { 0x17DD, 0x17DD }, { 0x180B, 0x180D }, { 0x18A9, 0x18A9 }, { 0x1920, 0x1922 }, { 0x1927, 0x1928 }, { 0x1932, 0x1932 }, { 0x1939, 0x193B }, { 0x1A17, 0x1A18 }, { 0x1B00, 0x1B03 }, { 0x1B34, 0x1B34 }, { 0x1B36, 0x1B3A }, { 0x1B3C, 0x1B3C }, { 0x1B42, 0x1B42 }, { 0x1B6B, 0x1B73 }, { 0x1DC0, 0x1DCA }, { 0x1DFE, 0x1DFF }, { 0x200B, 0x200F }, { 0x202A, 0x202E }, { 0x2060, 0x2063 }, { 0x206A, 0x206F }, { 0x20D0, 0x20EF }, { 0x302A, 0x302F }, { 0x3099, 0x309A }, { 0xA806, 0xA806 }, { 0xA80B, 0xA80B }, { 0xA825, 0xA826 }, { 0xFB1E, 0xFB1E }, { 0xFE00, 0xFE0F }, { 0xFE20, 0xFE23 }, { 0xFEFF, 0xFEFF }, { 0xFFF9, 0xFFFB }, { 0x10A01, 0x10A03 }, { 0x10A05, 0x10A06 }, { 0x10A0C, 0x10A0F }, { 0x10A38, 0x10A3A }, { 0x10A3F, 0x10A3F }, { 0x1D167, 0x1D169 }, { 0x1D173, 0x1D182 }, { 0x1D185, 0x1D18B }, { 0x1D1AA, 0x1D1AD }, { 0x1D242, 0x1D244 }, { 0xE0001, 0xE0001 }, { 0xE0020, 0xE007F }, { 0xE0100, 0xE01EF } }; static boolean bisearch(int ucs) { int min = 0; int mid; int max = COMBINING.length - 1; if (ucs < COMBINING[0][0] || ucs > COMBINING[max][1]) { return false; } while (max >= min) { mid = (min + max) / 2; if (ucs > COMBINING[mid][1]) { min = mid + 1; } else if (ucs < COMBINING[mid][0]) { max = mid - 1; } else { return true; } } return false; } /** * See : http://www.cl.cam.ac.uk/%7Emgk25/ucs/wcwidth.c * * The following two functions define the column width of an ISO 10646 character * as follows: * * - The null character (U+0000) has a column width of 0. * * - Other C0/C1 control characters and DEL will lead to a return value of -1. * * - Non-spacing and enclosing combining characters (general category code Mn or * Me in the Unicode database) have a column width of 0. * * - SOFT HYPHEN (U+00AD) has a column width of 1. * * - Other format characters (general category code Cf in the Unicode database) * and ZERO WIDTH SPACE (U+200B) have a column width of 0. * * - Hangul Jamo medial vowels and final consonants (U+1160-U+11FF) have a * column width of 0. * * - Spacing characters in the East Asian Wide (W) or East Asian Full-width (F) * category as defined in Unicode Technical Report #11 have a column width of 2. * * - All remaining characters (including all printable ISO 8859-1 and WGL4 * characters, Unicode control characters, etc.) have a column width of 1. * * This implementation assumes that wchar_t characters are encoded in ISO 10646. */ public static int of(int codePoint) { // test for 8-bit control characters if (codePoint == 0) { return 0; } if (codePoint < 32 || (codePoint >= 0x7f && codePoint < 0xa0)) { return -1; } // Added by Arnaud : Usual 8 bit char if (codePoint < 127) { return 1; } // binary search in table of non-spacing characters if (bisearch(codePoint)) { return 0; } // if we arrive here, ucs is not a combining or C0/C1 control character return 1 + ((codePoint >= 0x1100 && (codePoint <= 0x115f || // Hangul Jamo init. consonants codePoint == 0x2329 || codePoint == 0x232a || (codePoint >= 0x2e80 && codePoint <= 0xa4cf && codePoint != 0x303f) || // CJK ... Yi (codePoint >= 0xac00 && codePoint <= 0xd7a3) || // Hangul Syllables (codePoint >= 0xf900 && codePoint <= 0xfaff) || // CJK Compatibility Ideographs (codePoint >= 0xfe10 && codePoint <= 0xfe19) || // Vertical forms (codePoint >= 0xfe30 && codePoint <= 0xfe6f) || // CJK Compatibility Forms (codePoint >= 0xff00 && codePoint <= 0xff60) || // Fullwidth Forms (codePoint >= 0xffe0 && codePoint <= 0xffe6) || (codePoint >= 0x20000 && codePoint <= 0x2fffd) || (codePoint >= 0x30000 && codePoint <= 0x3fffd))) ? 1 : 0); } public static int length(CharSequence s) { int result = 0; for (int i = 0; i < s.length(); i++) { result += of(s.charAt(i)); } return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy