zext.plantuml.com.google.zxing.qrcode.encoder.Encoder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of plantuml-gplv2 Show documentation
Show all versions of plantuml-gplv2 Show documentation
PlantUML is a component that allows to quickly write diagrams from text.
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
/* +=======================================================================
* |
* | PlantUML : a free UML diagram generator
* |
* +=======================================================================
*
* (C) Copyright 2009-2024, Arnaud Roques
*
* Project Info: https://plantuml.com
*
* If you like this project or if you find it useful, you can support us at:
*
* https://plantuml.com/patreon (only 1$ per month!)
* https://plantuml.com/liberapay (only 1€ per month!)
* https://plantuml.com/paypal
*
*
* PlantUML is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License V2.
*
* THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
* LICENSE ("AGREEMENT"). [GNU General Public License V2]
*
* ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
* RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.
*
* You may obtain a copy of the License at
*
* https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* PlantUML can occasionally display sponsored or advertising messages. Those
* messages are usually generated on welcome or error images and never on
* functional diagrams.
* See https://plantuml.com/professional if you want to remove them
*
* Images (whatever their format : PNG, SVG, EPS...) generated by running PlantUML
* are owned by the author of their corresponding sources code (that is, their
* textual description in PlantUML language). Those images are not covered by
* this GPL v2 license.
*
* The generated images can then be used without any reference to the GPL v2 license.
* It is not even necessary to stipulate that they have been generated with PlantUML,
* although this will be appreciated by the PlantUML team.
*
* There is an exception : if the textual description in PlantUML language is also covered
* by any license, then the generated images are logically covered
* by the very same license.
*
* This is the IGY distribution (Install GraphViz by Yourself).
* You have to install GraphViz and to setup the GRAPHVIZ_DOT environment variable
* (see https://plantuml.com/graphviz-dot )
*
* Icons provided by OpenIconic : https://useiconic.com/open
* Archimate sprites provided by Archi : http://www.archimatetool.com
* Stdlib AWS provided by https://github.com/milo-minderbinder/AWS-PlantUML
* Stdlib Icons provided https://github.com/tupadr3/plantuml-icon-font-sprites
* ASCIIMathML (c) Peter Jipsen http://www.chapman.edu/~jipsen
* ASCIIMathML (c) David Lippman http://www.pierce.ctc.edu/dlippman
* CafeUndZopfli ported by Eugene Klyuchnikov https://github.com/eustas/CafeUndZopfli
* Brotli (c) by the Brotli Authors https://github.com/google/brotli
* Themes (c) by Brett Schwarz https://github.com/bschwarz/puml-themes
* Twemoji (c) by Twitter at https://twemoji.twitter.com/
*
*/
package zext.plantuml.com.google.zxing.qrcode.encoder;
import java.io.UnsupportedEncodingException;
import java.util.Hashtable;
import java.util.Vector;
import zext.plantuml.com.google.zxing.EncodeHintType;
import zext.plantuml.com.google.zxing.WriterException;
import zext.plantuml.com.google.zxing.common.BitArray;
import zext.plantuml.com.google.zxing.common.CharacterSetECI;
import zext.plantuml.com.google.zxing.common.ECI;
import zext.plantuml.com.google.zxing.common.reedsolomon.GF256;
import zext.plantuml.com.google.zxing.common.reedsolomon.ReedSolomonEncoder;
import zext.plantuml.com.google.zxing.qrcode.decoder.ErrorCorrectionLevel;
import zext.plantuml.com.google.zxing.qrcode.decoder.Mode;
import zext.plantuml.com.google.zxing.qrcode.decoder.Version;
/**
* @author [email protected] (Satoru Takabayashi) - creator
* @author [email protected] (Daniel Switkin) - ported from C++
*/
public final class Encoder {
// The original table is defined in the table 5 of JISX0510:2004 (p.19).
private static final int[] ALPHANUMERIC_TABLE = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x00-0x0f
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 0x10-0x1f
36, -1, -1, -1, 37, 38, -1, -1, -1, -1, 39, 40, -1, 41, 42, 43, // 0x20-0x2f
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 44, -1, -1, -1, -1, -1, // 0x30-0x3f
-1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, // 0x40-0x4f
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, -1, // 0x50-0x5f
};
static final String DEFAULT_BYTE_MODE_ENCODING = "ISO-8859-1";
private Encoder() {
}
// The mask penalty calculation is complicated. See Table 21 of JISX0510:2004 (p.45) for details.
// Basically it applies four rules and summate all penalties.
private static int calculateMaskPenalty(ByteMatrix matrix) {
int penalty = 0;
penalty += MaskUtil.applyMaskPenaltyRule1(matrix);
penalty += MaskUtil.applyMaskPenaltyRule2(matrix);
penalty += MaskUtil.applyMaskPenaltyRule3(matrix);
penalty += MaskUtil.applyMaskPenaltyRule4(matrix);
return penalty;
}
/**
* Encode "bytes" with the error correction level "ecLevel". The encoding mode will be chosen
* internally by chooseMode(). On success, store the result in "qrCode".
*
* We recommend you to use QRCode.EC_LEVEL_L (the lowest level) for
* "getECLevel" since our primary use is to show QR code on desktop screens. We don't need very
* strong error correction for this purpose.
*
* Note that there is no way to encode bytes in MODE_KANJI. We might want to add EncodeWithMode()
* with which clients can specify the encoding mode. For now, we don't need the functionality.
*/
public static void encode(String content, ErrorCorrectionLevel ecLevel, QRCode qrCode)
throws WriterException {
encode(content, ecLevel, null, qrCode);
}
public static void encode(String content, ErrorCorrectionLevel ecLevel, Hashtable hints,
QRCode qrCode) throws WriterException {
String encoding = hints == null ? null : (String) hints.get(EncodeHintType.CHARACTER_SET);
if (encoding == null) {
encoding = DEFAULT_BYTE_MODE_ENCODING;
}
// Step 1: Choose the mode (encoding).
Mode mode = chooseMode(content, encoding);
// Step 2: Append "bytes" into "dataBits" in appropriate encoding.
BitArray dataBits = new BitArray();
appendBytes(content, mode, dataBits, encoding);
// Step 3: Initialize QR code that can contain "dataBits".
int numInputBytes = dataBits.getSizeInBytes();
initQRCode(numInputBytes, ecLevel, mode, qrCode);
// Step 4: Build another bit vector that contains header and data.
BitArray headerAndDataBits = new BitArray();
// Step 4.5: Append ECI message if applicable
if (mode == Mode.BYTE && !DEFAULT_BYTE_MODE_ENCODING.equals(encoding)) {
CharacterSetECI eci = CharacterSetECI.getCharacterSetECIByName(encoding);
if (eci != null) {
appendECI(eci, headerAndDataBits);
}
}
appendModeInfo(mode, headerAndDataBits);
int numLetters = mode.equals(Mode.BYTE) ? dataBits.getSizeInBytes() : content.length();
appendLengthInfo(numLetters, qrCode.getVersion(), mode, headerAndDataBits);
headerAndDataBits.appendBitArray(dataBits);
// Step 5: Terminate the bits properly.
terminateBits(qrCode.getNumDataBytes(), headerAndDataBits);
// Step 6: Interleave data bits with error correction code.
BitArray finalBits = new BitArray();
interleaveWithECBytes(headerAndDataBits, qrCode.getNumTotalBytes(), qrCode.getNumDataBytes(),
qrCode.getNumRSBlocks(), finalBits);
// Step 7: Choose the mask pattern and set to "qrCode".
ByteMatrix matrix = new ByteMatrix(qrCode.getMatrixWidth(), qrCode.getMatrixWidth());
qrCode.setMaskPattern(chooseMaskPattern(finalBits, qrCode.getECLevel(), qrCode.getVersion(),
matrix));
// Step 8. Build the matrix and set it to "qrCode".
MatrixUtil.buildMatrix(finalBits, qrCode.getECLevel(), qrCode.getVersion(),
qrCode.getMaskPattern(), matrix);
qrCode.setMatrix(matrix);
// Step 9. Make sure we have a valid QR Code.
if (!qrCode.isValid()) {
throw new WriterException("Invalid QR code: " + qrCode.toString());
}
}
/**
* @return the code point of the table used in alphanumeric mode or
* -1 if there is no corresponding code in the table.
*/
static int getAlphanumericCode(int code) {
if (code < ALPHANUMERIC_TABLE.length) {
return ALPHANUMERIC_TABLE[code];
}
return -1;
}
public static Mode chooseMode(String content) {
return chooseMode(content, null);
}
/**
* Choose the best mode by examining the content. Note that 'encoding' is used as a hint;
* if it is Shift_JIS, and the input is only double-byte Kanji, then we return {@link Mode#KANJI}.
*/
public static Mode chooseMode(String content, String encoding) {
if ("Shift_JIS".equals(encoding)) {
// Choose Kanji mode if all input are double-byte characters
return isOnlyDoubleByteKanji(content) ? Mode.KANJI : Mode.BYTE;
}
boolean hasNumeric = false;
boolean hasAlphanumeric = false;
for (int i = 0; i < content.length(); ++i) {
char c = content.charAt(i);
if (c >= '0' && c <= '9') {
hasNumeric = true;
} else if (getAlphanumericCode(c) != -1) {
hasAlphanumeric = true;
} else {
return Mode.BYTE;
}
}
if (hasAlphanumeric) {
return Mode.ALPHANUMERIC;
} else if (hasNumeric) {
return Mode.NUMERIC;
}
return Mode.BYTE;
}
private static boolean isOnlyDoubleByteKanji(String content) {
byte[] bytes;
try {
bytes = content.getBytes("Shift_JIS");
} catch (UnsupportedEncodingException uee) {
return false;
}
int length = bytes.length;
if (length % 2 != 0) {
return false;
}
for (int i = 0; i < length; i += 2) {
int byte1 = bytes[i] & 0xFF;
if ((byte1 < 0x81 || byte1 > 0x9F) && (byte1 < 0xE0 || byte1 > 0xEB)) {
return false;
}
}
return true;
}
private static int chooseMaskPattern(BitArray bits, ErrorCorrectionLevel ecLevel, int version,
ByteMatrix matrix) throws WriterException {
int minPenalty = Integer.MAX_VALUE; // Lower penalty is better.
int bestMaskPattern = -1;
// We try all mask patterns to choose the best one.
for (int maskPattern = 0; maskPattern < QRCode.NUM_MASK_PATTERNS; maskPattern++) {
MatrixUtil.buildMatrix(bits, ecLevel, version, maskPattern, matrix);
int penalty = calculateMaskPenalty(matrix);
if (penalty < minPenalty) {
minPenalty = penalty;
bestMaskPattern = maskPattern;
}
}
return bestMaskPattern;
}
/**
* Initialize "qrCode" according to "numInputBytes", "ecLevel", and "mode". On success,
* modify "qrCode".
*/
private static void initQRCode(int numInputBytes, ErrorCorrectionLevel ecLevel, Mode mode,
QRCode qrCode) throws WriterException {
qrCode.setECLevel(ecLevel);
qrCode.setMode(mode);
// In the following comments, we use numbers of Version 7-H.
for (int versionNum = 1; versionNum <= 40; versionNum++) {
Version version = Version.getVersionForNumber(versionNum);
// numBytes = 196
int numBytes = version.getTotalCodewords();
// getNumECBytes = 130
Version.ECBlocks ecBlocks = version.getECBlocksForLevel(ecLevel);
int numEcBytes = ecBlocks.getTotalECCodewords();
// getNumRSBlocks = 5
int numRSBlocks = ecBlocks.getNumBlocks();
// getNumDataBytes = 196 - 130 = 66
int numDataBytes = numBytes - numEcBytes;
// We want to choose the smallest version which can contain data of "numInputBytes" + some
// extra bits for the header (mode info and length info). The header can be three bytes
// (precisely 4 + 16 bits) at most. Hence we do +3 here.
if (numDataBytes >= numInputBytes + 3) {
// Yay, we found the proper rs block info!
qrCode.setVersion(versionNum);
qrCode.setNumTotalBytes(numBytes);
qrCode.setNumDataBytes(numDataBytes);
qrCode.setNumRSBlocks(numRSBlocks);
// getNumECBytes = 196 - 66 = 130
qrCode.setNumECBytes(numEcBytes);
// matrix width = 21 + 6 * 4 = 45
qrCode.setMatrixWidth(version.getDimensionForVersion());
return;
}
}
throw new WriterException("Cannot find proper rs block info (input data too big?)");
}
/**
* Terminate bits as described in 8.4.8 and 8.4.9 of JISX0510:2004 (p.24).
*/
static void terminateBits(int numDataBytes, BitArray bits) throws WriterException {
int capacity = numDataBytes << 3;
if (bits.getSize() > capacity) {
throw new WriterException("data bits cannot fit in the QR Code" + bits.getSize() + " > " +
capacity);
}
for (int i = 0; i < 4 && bits.getSize() < capacity; ++i) {
bits.appendBit(false);
}
// Append termination bits. See 8.4.8 of JISX0510:2004 (p.24) for details.
// If the last byte isn't 8-bit aligned, we'll add padding bits.
int numBitsInLastByte = bits.getSize() & 0x07;
if (numBitsInLastByte > 0) {
for (int i = numBitsInLastByte; i < 8; i++) {
bits.appendBit(false);
}
}
// If we have more space, we'll fill the space with padding patterns defined in 8.4.9 (p.24).
int numPaddingBytes = numDataBytes - bits.getSizeInBytes();
for (int i = 0; i < numPaddingBytes; ++i) {
bits.appendBits(((i & 0x01) == 0) ? 0xEC : 0x11, 8);
}
if (bits.getSize() != capacity) {
throw new WriterException("Bits size does not equal capacity");
}
}
/**
* Get number of data bytes and number of error correction bytes for block id "blockID". Store
* the result in "numDataBytesInBlock", and "numECBytesInBlock". See table 12 in 8.5.1 of
* JISX0510:2004 (p.30)
*/
static void getNumDataBytesAndNumECBytesForBlockID(int numTotalBytes, int numDataBytes,
int numRSBlocks, int blockID, int[] numDataBytesInBlock,
int[] numECBytesInBlock) throws WriterException {
if (blockID >= numRSBlocks) {
throw new WriterException("Block ID too large");
}
// numRsBlocksInGroup2 = 196 % 5 = 1
int numRsBlocksInGroup2 = numTotalBytes % numRSBlocks;
// numRsBlocksInGroup1 = 5 - 1 = 4
int numRsBlocksInGroup1 = numRSBlocks - numRsBlocksInGroup2;
// numTotalBytesInGroup1 = 196 / 5 = 39
int numTotalBytesInGroup1 = numTotalBytes / numRSBlocks;
// numTotalBytesInGroup2 = 39 + 1 = 40
int numTotalBytesInGroup2 = numTotalBytesInGroup1 + 1;
// numDataBytesInGroup1 = 66 / 5 = 13
int numDataBytesInGroup1 = numDataBytes / numRSBlocks;
// numDataBytesInGroup2 = 13 + 1 = 14
int numDataBytesInGroup2 = numDataBytesInGroup1 + 1;
// numEcBytesInGroup1 = 39 - 13 = 26
int numEcBytesInGroup1 = numTotalBytesInGroup1 - numDataBytesInGroup1;
// numEcBytesInGroup2 = 40 - 14 = 26
int numEcBytesInGroup2 = numTotalBytesInGroup2 - numDataBytesInGroup2;
// Sanity checks.
// 26 = 26
if (numEcBytesInGroup1 != numEcBytesInGroup2) {
throw new WriterException("EC bytes mismatch");
}
// 5 = 4 + 1.
if (numRSBlocks != numRsBlocksInGroup1 + numRsBlocksInGroup2) {
throw new WriterException("RS blocks mismatch");
}
// 196 = (13 + 26) * 4 + (14 + 26) * 1
if (numTotalBytes !=
((numDataBytesInGroup1 + numEcBytesInGroup1) *
numRsBlocksInGroup1) +
((numDataBytesInGroup2 + numEcBytesInGroup2) *
numRsBlocksInGroup2)) {
throw new WriterException("Total bytes mismatch");
}
if (blockID < numRsBlocksInGroup1) {
numDataBytesInBlock[0] = numDataBytesInGroup1;
numECBytesInBlock[0] = numEcBytesInGroup1;
} else {
numDataBytesInBlock[0] = numDataBytesInGroup2;
numECBytesInBlock[0] = numEcBytesInGroup2;
}
}
/**
* Interleave "bits" with corresponding error correction bytes. On success, store the result in
* "result". The interleave rule is complicated. See 8.6 of JISX0510:2004 (p.37) for details.
*/
static void interleaveWithECBytes(BitArray bits, int numTotalBytes,
int numDataBytes, int numRSBlocks, BitArray result) throws WriterException {
// "bits" must have "getNumDataBytes" bytes of data.
if (bits.getSizeInBytes() != numDataBytes) {
throw new WriterException("Number of bits and data bytes does not match");
}
// Step 1. Divide data bytes into blocks and generate error correction bytes for them. We'll
// store the divided data bytes blocks and error correction bytes blocks into "blocks".
int dataBytesOffset = 0;
int maxNumDataBytes = 0;
int maxNumEcBytes = 0;
// Since, we know the number of reedsolmon blocks, we can initialize the vector with the number.
Vector blocks = new Vector(numRSBlocks);
for (int i = 0; i < numRSBlocks; ++i) {
int[] numDataBytesInBlock = new int[1];
int[] numEcBytesInBlock = new int[1];
getNumDataBytesAndNumECBytesForBlockID(
numTotalBytes, numDataBytes, numRSBlocks, i,
numDataBytesInBlock, numEcBytesInBlock);
int size = numDataBytesInBlock[0];
byte[] dataBytes = new byte[size];
bits.toBytes(8*dataBytesOffset, dataBytes, 0, size);
byte[] ecBytes = generateECBytes(dataBytes, numEcBytesInBlock[0]);
blocks.addElement(new BlockPair(dataBytes, ecBytes));
maxNumDataBytes = Math.max(maxNumDataBytes, size);
maxNumEcBytes = Math.max(maxNumEcBytes, ecBytes.length);
dataBytesOffset += numDataBytesInBlock[0];
}
if (numDataBytes != dataBytesOffset) {
throw new WriterException("Data bytes does not match offset");
}
// First, place data blocks.
for (int i = 0; i < maxNumDataBytes; ++i) {
for (int j = 0; j < blocks.size(); ++j) {
byte[] dataBytes = ((BlockPair) blocks.elementAt(j)).getDataBytes();
if (i < dataBytes.length) {
result.appendBits(dataBytes[i], 8);
}
}
}
// Then, place error correction blocks.
for (int i = 0; i < maxNumEcBytes; ++i) {
for (int j = 0; j < blocks.size(); ++j) {
byte[] ecBytes = ((BlockPair) blocks.elementAt(j)).getErrorCorrectionBytes();
if (i < ecBytes.length) {
result.appendBits(ecBytes[i], 8);
}
}
}
if (numTotalBytes != result.getSizeInBytes()) { // Should be same.
throw new WriterException("Interleaving error: " + numTotalBytes + " and " +
result.getSizeInBytes() + " differ.");
}
}
static byte[] generateECBytes(byte[] dataBytes, int numEcBytesInBlock) {
int numDataBytes = dataBytes.length;
int[] toEncode = new int[numDataBytes + numEcBytesInBlock];
for (int i = 0; i < numDataBytes; i++) {
toEncode[i] = dataBytes[i] & 0xFF;
}
new ReedSolomonEncoder(GF256.QR_CODE_FIELD).encode(toEncode, numEcBytesInBlock);
byte[] ecBytes = new byte[numEcBytesInBlock];
for (int i = 0; i < numEcBytesInBlock; i++) {
ecBytes[i] = (byte) toEncode[numDataBytes + i];
}
return ecBytes;
}
/**
* Append mode info. On success, store the result in "bits".
*/
static void appendModeInfo(Mode mode, BitArray bits) {
bits.appendBits(mode.getBits(), 4);
}
/**
* Append length info. On success, store the result in "bits".
*/
static void appendLengthInfo(int numLetters, int version, Mode mode, BitArray bits)
throws WriterException {
int numBits = mode.getCharacterCountBits(Version.getVersionForNumber(version));
if (numLetters > ((1 << numBits) - 1)) {
throw new WriterException(numLetters + "is bigger than" + ((1 << numBits) - 1));
}
bits.appendBits(numLetters, numBits);
}
/**
* Append "bytes" in "mode" mode (encoding) into "bits". On success, store the result in "bits".
*/
static void appendBytes(String content, Mode mode, BitArray bits, String encoding)
throws WriterException {
if (mode.equals(Mode.NUMERIC)) {
appendNumericBytes(content, bits);
} else if (mode.equals(Mode.ALPHANUMERIC)) {
appendAlphanumericBytes(content, bits);
} else if (mode.equals(Mode.BYTE)) {
append8BitBytes(content, bits, encoding);
} else if (mode.equals(Mode.KANJI)) {
appendKanjiBytes(content, bits);
} else {
throw new WriterException("Invalid mode: " + mode);
}
}
static void appendNumericBytes(String content, BitArray bits) {
int length = content.length();
int i = 0;
while (i < length) {
int num1 = content.charAt(i) - '0';
if (i + 2 < length) {
// Encode three numeric letters in ten bits.
int num2 = content.charAt(i + 1) - '0';
int num3 = content.charAt(i + 2) - '0';
bits.appendBits(num1 * 100 + num2 * 10 + num3, 10);
i += 3;
} else if (i + 1 < length) {
// Encode two numeric letters in seven bits.
int num2 = content.charAt(i + 1) - '0';
bits.appendBits(num1 * 10 + num2, 7);
i += 2;
} else {
// Encode one numeric letter in four bits.
bits.appendBits(num1, 4);
i++;
}
}
}
static void appendAlphanumericBytes(String content, BitArray bits) throws WriterException {
int length = content.length();
int i = 0;
while (i < length) {
int code1 = getAlphanumericCode(content.charAt(i));
if (code1 == -1) {
throw new WriterException();
}
if (i + 1 < length) {
int code2 = getAlphanumericCode(content.charAt(i + 1));
if (code2 == -1) {
throw new WriterException();
}
// Encode two alphanumeric letters in 11 bits.
bits.appendBits(code1 * 45 + code2, 11);
i += 2;
} else {
// Encode one alphanumeric letter in six bits.
bits.appendBits(code1, 6);
i++;
}
}
}
static void append8BitBytes(String content, BitArray bits, String encoding)
throws WriterException {
byte[] bytes;
try {
bytes = content.getBytes(encoding);
} catch (UnsupportedEncodingException uee) {
throw new WriterException(uee.toString());
}
for (int i = 0; i < bytes.length; ++i) {
bits.appendBits(bytes[i], 8);
}
}
static void appendKanjiBytes(String content, BitArray bits) throws WriterException {
byte[] bytes;
try {
bytes = content.getBytes("Shift_JIS");
} catch (UnsupportedEncodingException uee) {
throw new WriterException(uee.toString());
}
int length = bytes.length;
for (int i = 0; i < length; i += 2) {
int byte1 = bytes[i] & 0xFF;
int byte2 = bytes[i + 1] & 0xFF;
int code = (byte1 << 8) | byte2;
int subtracted = -1;
if (code >= 0x8140 && code <= 0x9ffc) {
subtracted = code - 0x8140;
} else if (code >= 0xe040 && code <= 0xebbf) {
subtracted = code - 0xc140;
}
if (subtracted == -1) {
throw new WriterException("Invalid byte sequence");
}
int encoded = ((subtracted >> 8) * 0xc0) + (subtracted & 0xff);
bits.appendBits(encoded, 13);
}
}
private static void appendECI(ECI eci, BitArray bits) {
bits.appendBits(Mode.ECI.getBits(), 4);
// This is correct for values up to 127, which is all we need now.
bits.appendBits(eci.getValue(), 8);
}
}