gen.lib.dotgen.flat__c Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of plantuml-mit Show documentation
Show all versions of plantuml-mit Show documentation
PlantUML is a component that allows to quickly write diagrams from text.
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
package gen.lib.dotgen;
import static gen.lib.cgraph.edge__c.aghead;
import static gen.lib.cgraph.edge__c.agtail;
import static gen.lib.dotgen.dotinit__c.dot_root;
import static gen.lib.dotgen.fastgr__c.virtual_edge;
import static gen.lib.dotgen.fastgr__c.virtual_node;
import static gen.lib.dotgen.mincross__c.rec_reset_vlists;
import static gen.lib.dotgen.mincross__c.rec_save_vlists;
import static smetana.core.Macro.ED_adjacent;
import static smetana.core.Macro.ED_dist;
import static smetana.core.Macro.ED_edge_type;
import static smetana.core.Macro.ED_head_port;
import static smetana.core.Macro.ED_label;
import static smetana.core.Macro.ED_tail_port;
import static smetana.core.Macro.ED_to_virt;
import static smetana.core.Macro.FLATORDER;
import static smetana.core.Macro.GD_flip;
import static smetana.core.Macro.GD_maxrank;
import static smetana.core.Macro.GD_minrank;
import static smetana.core.Macro.GD_n_cluster;
import static smetana.core.Macro.GD_nlist;
import static smetana.core.Macro.GD_rank;
import static smetana.core.Macro.GD_ranksep;
import static smetana.core.Macro.ND_alg;
import static smetana.core.Macro.ND_coord;
import static smetana.core.Macro.ND_flat_in;
import static smetana.core.Macro.ND_flat_out;
import static smetana.core.Macro.ND_ht;
import static smetana.core.Macro.ND_in;
import static smetana.core.Macro.ND_label;
import static smetana.core.Macro.ND_lw;
import static smetana.core.Macro.ND_next;
import static smetana.core.Macro.ND_node_type;
import static smetana.core.Macro.ND_order;
import static smetana.core.Macro.ND_other;
import static smetana.core.Macro.ND_out;
import static smetana.core.Macro.ND_rank;
import static smetana.core.Macro.ND_rw;
import static smetana.core.Macro.NORMAL;
import static smetana.core.Macro.VIRTUAL;
import static smetana.core.debug.SmetanaDebug.ENTERING;
import static smetana.core.debug.SmetanaDebug.LEAVING;
import gen.annotation.Difficult;
import gen.annotation.HasND_Rank;
import gen.annotation.Original;
import gen.annotation.Reviewed;
import gen.annotation.Unused;
import h.ST_Agedge_s;
import h.ST_Agnode_s;
import h.ST_Agraph_s;
import h.ST_pointf;
import h.ST_rank_t;
import smetana.core.CArray;
import smetana.core.CArrayOfStar;
import smetana.core.Globals;
import smetana.core.ZType;
import smetana.core.debug.SmetanaDebug;
public class flat__c {
//3 e0gtvsxlvztmwu8yy44wfvf97
// static node_t *make_vn_slot(graph_t * g, int r, int pos)
@Unused
@HasND_Rank
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="", key="e0gtvsxlvztmwu8yy44wfvf97", definition="static node_t *make_vn_slot(graph_t * g, int r, int pos)")
public static ST_Agnode_s make_vn_slot(ST_Agraph_s g, int r, int pos) {
ENTERING("e0gtvsxlvztmwu8yy44wfvf97","make_vn_slot");
try {
int i;
CArrayOfStar v;
ST_Agnode_s n;
v = CArrayOfStar.REALLOC(GD_rank(g).get__(r).n + 2, GD_rank(g).get__(r).v, ZType.ST_Agnode_s);
GD_rank(g).get__(r).v = v;
for (i = GD_rank(g).get__(r).n; i > pos; i--) {
v.set_(i, v.get_(i - 1));
ND_order(v.get_(i), ND_order(v.get_(i))+1);
}
n = virtual_node(g);
v.set_(pos, n);
ND_order(n, pos);
ND_rank(n, r);
v.set_(++GD_rank(g).get__(r).n, null);
return v.get_(pos);
} finally {
LEAVING("e0gtvsxlvztmwu8yy44wfvf97","make_vn_slot");
}
}
//3 d64wt9oqphauv3hp4axbg2ep3
// static void findlr(node_t * u, node_t * v, int *lp, int *rp)
@Unused
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="findlr", key="d64wt9oqphauv3hp4axbg2ep3", definition="static void findlr(node_t * u, node_t * v, int *lp, int *rp)")
public static void findlr(ST_Agnode_s u, ST_Agnode_s v, int lp[], int rp[]) {
ENTERING("d64wt9oqphauv3hp4axbg2ep3","findlr");
try {
int l, r;
l = ND_order(u);
r = ND_order(v);
if (l > r) {
int t = l;
l = r;
r = t;
}
lp[0] = l;
rp[0] = r;
} finally {
LEAVING("d64wt9oqphauv3hp4axbg2ep3","findlr");
}
}
//3 bwjjmaydx5a2fnpeoligkha0r
// static void setbounds(node_t * v, int *bounds, int lpos, int rpos)
@Unused
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="setbounds", key="bwjjmaydx5a2fnpeoligkha0r", definition="static void setbounds(node_t * v, int *bounds, int lpos, int rpos)")
public static void setbounds(ST_Agnode_s v, int bounds[], int lpos[], int rpos[]) {
ENTERING("bwjjmaydx5a2fnpeoligkha0r","setbounds");
try {
int i, ord;
int[] l = new int[1], r = new int[1];
ST_Agedge_s f;
if (ND_node_type(v) == 1) {
ord = ND_order(v);
if (ND_in(v).size == 0) { /* flat */
assert(ND_out(v).size == 2);
findlr((ST_Agnode_s) aghead(ND_out(v).list.get_(0)), (ST_Agnode_s) aghead(ND_out(v).list.get_(1)), l,
r);
/* the other flat edge could be to the left or right */
if (r[0] <= lpos[0])
bounds[2] = bounds[0] = ord;
else if (l[0] >= rpos[0])
bounds[3] = bounds[1] = ord;
/* could be spanning this one */
else if ((l[0] < lpos[0]) && (r[0] > rpos[0])); /* ignore */
/* must have intersecting ranges */
else {
if ((l[0] < lpos[0]) || ((l[0] == lpos[0]) && (r[0] < rpos[0])))
bounds[2] = ord;
if ((r[0] > rpos[0]) || ((r[0] == rpos[0]) && (l[0] > lpos[0])))
bounds[3] = ord;
}
} else { /* forward */
boolean onleft, onright;
onleft = onright = false;
for (i = 0; (f = (ST_Agedge_s) ND_out(v).list.get_(i))!=null; i++) {
if (ND_order(aghead(f)) <= lpos[0]) {
onleft = true;
continue;
}
if (ND_order(aghead(f)) >= rpos[0]) {
onright = true;
continue;
}
}
if (onleft && (onright == false))
bounds[0] = ord + 1;
if (onright && (onleft == false))
bounds[1] = ord - 1;
}
}
} finally {
LEAVING("bwjjmaydx5a2fnpeoligkha0r","setbounds");
}
}
private static final int HLB = 0; /* hard left bound */
private static final int HRB = 1; /* hard right bound */
private static final int SLB = 2; /* soft left bound */
private static final int SRB = 3; /* soft right bound */
@Reviewed(when = "16/11/2020")
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="flat_limits", key="3bc4otcsxj1dujj49ydbb19oa", definition="static int flat_limits(graph_t * g, edge_t * e)")
public static int flat_limits(ST_Agraph_s g, ST_Agedge_s e) {
ENTERING("3bc4otcsxj1dujj49ydbb19oa","flat_limits");
try {
int lnode, rnode, r, pos;
int[] lpos = new int[1], rpos = new int[1];
int bounds[] = new int[4];
CArrayOfStar rank;
r = ND_rank(agtail(e)) - 1;
if (r<0) {
SmetanaDebug.LOG("flat_limits r="+r); // Set xt07
}
rank = GD_rank(g).get__(r).v;
lnode = 0;
rnode = GD_rank(g).get__(r).n - 1;
bounds[HLB] = bounds[SLB] = lnode - 1;
bounds[HRB] = bounds[SRB] = rnode + 1;
findlr(agtail(e), aghead(e), lpos, rpos);
while (lnode <= rnode) {
setbounds(rank.get_(lnode), bounds, lpos, rpos);
if (lnode != rnode)
setbounds(rank.get_(rnode), bounds, lpos, rpos);
lnode++;
rnode--;
if (bounds[HRB] - bounds[HLB] <= 1)
break;
}
if (bounds[HLB] <= bounds[HRB])
pos = (bounds[HLB] + bounds[HRB] + 1) / 2;
else
pos = (bounds[SLB] + bounds[SRB] + 1) / 2;
return pos;
} finally {
LEAVING("3bc4otcsxj1dujj49ydbb19oa","flat_limits");
}
}
/* flat_node:
* Create virtual node representing edge label between
* actual ends of edge e.
* This node is characterized by being virtual and having a non-NULL
* ND_alg pointing to e.
*/
@Reviewed(when = "15/11/2020")
@Difficult
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="flat_node", key="4cw9yo9ap8ze1r873v6jat4yc", definition="static void flat_node(edge_t * e)")
public static void flat_node(ST_Agedge_s e) {
ENTERING("4cw9yo9ap8ze1r873v6jat4yc","flat_node");
try {
int r, place, ypos, h2;
ST_Agraph_s g;
ST_Agnode_s n, vn;
ST_Agedge_s ve;
final ST_pointf dimen = new ST_pointf();
SmetanaDebug.LOG("Flat node for "+e.NAME);
if (ED_label(e) == null)
return;
g = dot_root(agtail(e));
r = ND_rank(agtail(e));
place = flat_limits(g, e);
/* grab ypos = LL.y of label box before make_vn_slot() */
if ((n = GD_rank(g).get__(r - 1).v.get_(0))!=null)
ypos = (int)(ND_coord(n).y - GD_rank(g).get__(r - 1).ht1);
else {
n = GD_rank(g).get__(r).v.get_(0);
ypos = (int)(ND_coord(n).y + GD_rank(g).get__(r).ht2 + GD_ranksep(g));
}
vn = make_vn_slot(g, r - 1, place);
dimen.___(ED_label(e).dimen);
if (GD_flip(g)) {
double f = dimen.x;
dimen.x = dimen.y;
dimen.y = f;
}
ND_ht(vn, dimen.y);
h2 = (int)(ND_ht(vn) / 2);
ND_rw(vn, dimen.x / 2);
ND_lw(vn, dimen.x / 2);
ND_label(vn, ED_label(e));
ND_coord(vn).y = ypos + h2;
ve = virtual_edge(vn, agtail(e), e); /* was NULL? */
ED_tail_port(ve).p.x = -ND_lw(vn);
ED_head_port(ve).p.x = ND_rw(agtail(e));
ED_edge_type(ve, FLATORDER);
ve = virtual_edge(vn, aghead(e), e);
ED_tail_port(ve).p.x = ND_rw(vn);
ED_head_port(ve).p.x = ND_lw(aghead(e));
ED_edge_type(ve, FLATORDER);
/* another assumed symmetry of ht1/ht2 of a label node */
if (GD_rank(g).get__(r - 1).ht1 < h2)
GD_rank(g).get__(r - 1).ht1 = h2;
if (GD_rank(g).get__(r - 1).ht2 < h2)
GD_rank(g).get__(r - 1).ht2 = h2;
ND_alg(vn, e);
} finally {
LEAVING("4cw9yo9ap8ze1r873v6jat4yc","flat_node");
}
}
//3 1lopavodoru6ee52snd5l6swd
// static void abomination(graph_t * g)
@Unused
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="abomination", key="1lopavodoru6ee52snd5l6swd", definition="static void abomination(graph_t * g)")
public static void abomination(ST_Agraph_s g) {
ENTERING("1lopavodoru6ee52snd5l6swd","abomination");
try {
int r;
CArray rptr;
assert(GD_minrank(g) == 0);
/* 3 = one for new rank, one for sentinel, one for off-by-one */
r = GD_maxrank(g) + 3;
rptr = CArray. REALLOC__(r, GD_rank(g), ZType.ST_rank_t);
GD_rank(g, rptr.plus_(1));
for (r = GD_maxrank(g); r >= 0; r--)
GD_rank(g).get__(r).___(GD_rank(g).get__(r - 1));
GD_rank(g).get__(r).n = 0;
GD_rank(g).get__(r).an = 0;
GD_rank(g).get__(r).v = CArrayOfStar.ALLOC(2, ZType.ST_Agnode_s);
GD_rank(g).get__(r).av = GD_rank(g).get__(r).v;
GD_rank(g).get__(r).flat = null;
GD_rank(g).get__(r).ht1 = 1;
GD_rank(g).get__(r).ht2 = 1;
GD_rank(g).get__(r).pht1 = 1;
GD_rank(g).get__(r).pht2 = 1;
GD_minrank(g, GD_minrank(g)-1);
} finally {
LEAVING("1lopavodoru6ee52snd5l6swd","abomination");
}
}
/* checkFlatAdjacent:
* Check if tn and hn are adjacent.
* If so, set adjacent bit on all related edges.
* Assume e is flat.
*/
@Reviewed(when = "15/11/2020")
@Difficult
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="checkFlatAdjacent", key="ctujx6e8k3rzv08h6gswdcaqs", definition="static void checkFlatAdjacent (edge_t* e)")
public static void checkFlatAdjacent(ST_Agedge_s e) {
ENTERING("ctujx6e8k3rzv08h6gswdcaqs","checkFlatAdjacent");
try {
SmetanaDebug.LOG("checkFlatAdjacent "+e.NAME);
ST_Agnode_s tn = agtail(e);
ST_Agnode_s hn = aghead(e);
int i, lo, hi;
ST_Agnode_s n;
CArray rank;
if (ND_order(tn) < ND_order(hn)) {
lo = ND_order(tn);
hi = ND_order(hn);
}
else {
lo = ND_order(hn);
hi = ND_order(tn);
}
rank = GD_rank(dot_root(tn)).plus_(ND_rank(tn));
for (i = lo + 1; i < hi; i++) {
n = rank.get__(0).v.get_(i);
if ((ND_node_type(n) == VIRTUAL && ND_label(n)!=null) ||
ND_node_type(n) == NORMAL)
break;
}
if (i == hi) { /* adjacent edge */
do {
ED_adjacent(e, 1);
e = ED_to_virt(e);
} while (e!=null);
}
} finally {
LEAVING("ctujx6e8k3rzv08h6gswdcaqs","checkFlatAdjacent");
}
}
/* flat_edges:
* Process flat edges.
* First, mark flat edges as having adjacent endpoints or not.
*
* Second, if there are edge labels, nodes are placed on ranks 0,2,4,...
* If we have a labeled flat edge on rank 0, add a rank -1.
*
* Finally, create label information. Add a virtual label node in the
* previous rank for each labeled, non-adjacent flat edge. If this is
* done for any edge, return true, so that main code will reset y coords.
* For labeled adjacent flat edges, store label width in representative edge.
* FIX: We should take into account any extra height needed for the latter
* labels.
*
* We leave equivalent flat edges in ND_other. Their ED_virt field should
* still point to the class representative.
*/
@Reviewed(when = "16/11/2020")
@Original(version="2.38.0", path="lib/dotgen/flat.c", name="flat_edges", key="bjwwj6ftkm0gv04cf1edqeaw6", definition="int flat_edges(graph_t * g)")
public static boolean flat_edges(Globals zz, ST_Agraph_s g) {
ENTERING("bjwwj6ftkm0gv04cf1edqeaw6","flat_edges");
try {
int i, j; boolean reset = false;
ST_Agnode_s n;
ST_Agedge_s e;
boolean found = false;
for (n = GD_nlist(g); n!=null; n = ND_next(n)) {
if (ND_flat_out(n).list!=null) {
for (j = 0; (e = ND_flat_out(n).list.get_(j))!=null; j++) {
checkFlatAdjacent (e);
}
}
for (j = 0; j < ND_other(n).size; j++) {
e = ND_other(n).list.get_(j);
if (ND_rank(aghead(e)) == ND_rank(agtail(e)))
checkFlatAdjacent (e);
}
}
if ((GD_rank(g).get__(0).flat!=null) || (GD_n_cluster(g) > 0)) {
for (i = 0; (n = GD_rank(g).get__(0).v.get_(i))!=null; i++) {
for (j = 0; (e = ND_flat_in(n).list.get_(j))!=null; j++) {
if ((ED_label(e)!=null) && ED_adjacent(e) == 0) {
abomination(g);
found = true;
break;
}
}
if (found)
break;
}
}
rec_save_vlists(g);
for (n = GD_nlist(g); n!=null; n = ND_next(n)) {
/* if n is the tail of any flat edge, one will be in flat_out */
if (ND_flat_out(n).list!=null) {
for (i = 0; (e = ND_flat_out(n).list.get_(i))!=null; i++) {
if (ED_label(e)!=null) {
SmetanaDebug.LOG("Aie1 for "+e.NAME+" "+ED_adjacent(e));
if (ED_adjacent(e)!=0) {
if (GD_flip(g)) ED_dist(e, ED_label(e).dimen.y);
else ED_dist(e, ED_label(e).dimen.x);
}
else {
SmetanaDebug.LOG("reset1 true");
reset = true;
flat_node(e);
}
}
}
/* look for other flat edges with labels */
for (j = 0; j < ND_other(n).size; j++) {
ST_Agedge_s le;
e = ND_other(n).list.get_(j);
SmetanaDebug.LOG("e="+e.NAME);
if (ND_rank(agtail(e)) != ND_rank(aghead(e))) continue;
if (agtail(e) == aghead(e)) continue; /* skip loops */
le = e;
while (ED_to_virt(le)!=null) le = ED_to_virt(le);
ED_adjacent(e, ED_adjacent(le));
if (ED_label(e)!=null) {
SmetanaDebug.LOG("Aie2 for "+e.NAME+" "+ED_adjacent(e));
SmetanaDebug.LOG("e2="+le.NAME);
SmetanaDebug.LOG("le2="+le.NAME);
if (ED_adjacent(e)!=0) {
double lw;
if (GD_flip(g)) lw = ED_label(e).dimen.y;
else lw = ED_label(e).dimen.x;
ED_dist(le, Math.max(lw,ED_dist(le)));
}
else {
SmetanaDebug.LOG("reset2 true");
reset = true;
flat_node(e);
}
}
}
}
}
if (reset)
rec_reset_vlists(zz, g);
return reset;
} finally {
LEAVING("bjwwj6ftkm0gv04cf1edqeaw6","flat_edges");
}
}
}