net.sourceforge.plantuml.klimt.geom.XLine2D Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of plantuml-mit Show documentation
Show all versions of plantuml-mit Show documentation
PlantUML is a component that allows to quickly write diagrams from text.
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
package net.sourceforge.plantuml.klimt.geom;
import net.sourceforge.plantuml.klimt.UTranslate;
import net.sourceforge.plantuml.klimt.drawing.UGraphic;
import net.sourceforge.plantuml.klimt.shape.UDrawable;
import net.sourceforge.plantuml.klimt.shape.ULine;
public class XLine2D implements UDrawable {
final public double x1;
final public double y1;
final public double x2;
final public double y2;
public XLine2D(double x1, double y1, double x2, double y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
public static XLine2D line(XPoint2D p1, XPoint2D p2) {
return new XLine2D(p1.getX(), p1.getY(), p2.getX(), p2.getY());
}
public XPoint2D getMiddle() {
final double mx = (this.x1 + this.x2) / 2;
final double my = (this.y1 + this.y2) / 2;
return new XPoint2D(mx, my);
}
public final double getX1() {
return x1;
}
public final double getY1() {
return y1;
}
public final double getX2() {
return x2;
}
public final double getY2() {
return y2;
}
public XPoint2D getP1() {
return new XPoint2D(x1, y1);
}
public XPoint2D getP2() {
return new XPoint2D(x2, y2);
}
public XLine2D withPoint1(XPoint2D other) {
return new XLine2D(other.x, other.y, x2, y2);
}
public XLine2D withPoint2(XPoint2D other) {
return new XLine2D(x1, y1, other.x, other.y);
}
/**
* Returns the square of the distance from a point to a line segment. The
* distance measured is the distance between the specified point and the closest
* point between the specified end points. If the specified point intersects the
* line segment in between the end points, this method returns 0.0.
*
* @param x1 the X coordinate of the start point of the specified line segment
* @param y1 the Y coordinate of the start point of the specified line segment
* @param x2 the X coordinate of the end point of the specified line segment
* @param y2 the Y coordinate of the end point of the specified line segment
* @param px the X coordinate of the specified point being measured against the
* specified line segment
* @param py the Y coordinate of the specified point being measured against the
* specified line segment
* @return a double value that is the square of the distance from the specified
* point to the specified line segment.
*
* @since 1.2
*/
public static double ptSegDistSq(double x1, double y1, double x2, double y2, double px, double py) {
// Adjust vectors relative to x1,y1
// x2,y2 becomes relative vector from x1,y1 to end of segment
x2 -= x1;
y2 -= y1;
// px,py becomes relative vector from x1,y1 to test point
px -= x1;
py -= y1;
double dotprod = px * x2 + py * y2;
double projlenSq;
if (dotprod <= 0.0) {
// px,py is on the side of x1,y1 away from x2,y2
// distance to segment is length of px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// switch to backwards vectors relative to x2,y2
// x2,y2 are already the negative of x1,y1=>x2,y2
// to get px,py to be the negative of px,py=>x2,y2
// the dot product of two negated vectors is the same
// as the dot product of the two normal vectors
px = x2 - px;
py = y2 - py;
dotprod = px * x2 + py * y2;
if (dotprod <= 0.0) {
// px,py is on the side of x2,y2 away from x1,y1
// distance to segment is length of (backwards) px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// px,py is between x1,y1 and x2,y2
// dotprod is the length of the px,py vector
// projected on the x2,y2=>x1,y1 vector times the
// length of the x2,y2=>x1,y1 vector
projlenSq = dotprod * dotprod / (x2 * x2 + y2 * y2);
}
}
// Distance to line is now the length of the relative point
// vector minus the length of its projection onto the line
// (which is zero if the projection falls outside the range
// of the line segment).
double lenSq = px * px + py * py - projlenSq;
if (lenSq < 0) {
lenSq = 0;
}
return lenSq;
}
public XPoint2D intersect(XLine2D line2) {
final double s1x = this.x2 - this.x1;
final double s1y = this.y2 - this.y1;
final double s2x = line2.x2 - line2.x1;
final double s2y = line2.y2 - line2.y1;
final double s = (-s1y * (this.x1 - line2.x1) + s1x * (this.y1 - line2.y1)) / (-s2x * s1y + s1x * s2y);
final double t = (s2x * (this.y1 - line2.y1) - s2y * (this.x1 - line2.x1)) / (-s2x * s1y + s1x * s2y);
if (s >= 0 && s <= 1 && t >= 0 && t <= 1)
return new XPoint2D(this.x1 + (t * s1x), this.y1 + (t * s1y));
return null;
}
// ::comment when __HAXE__
public void drawU(UGraphic ug) {
ug = ug.apply(new UTranslate(x1, y1));
final ULine line = new ULine(x2 - x1, y2 - y1);
ug.draw(line);
}
public double getAngle() {
return Math.atan2(y2 - y1, x2 - x1);
}
}