net.sourceforge.plantuml.klimt.drawing.g2d.ExtendedGeneralPath Maven / Gradle / Ivy
Show all versions of plantuml-mit Show documentation
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
/* +=======================================================================
* |
* | PlantUML : a free UML diagram generator
* |
* +=======================================================================
*
* (C) Copyright 2009-2024, Arnaud Roques
*
* Project Info: https://plantuml.com
*
* If you like this project or if you find it useful, you can support us at:
*
* https://plantuml.com/patreon (only 1$ per month!)
* https://plantuml.com/liberapay (only 1€ per month!)
* https://plantuml.com/paypal
*
*
* PlantUML is free software; you can redistribute it and/or modify it
* under the terms of the MIT License.
*
* See http://opensource.org/licenses/MIT
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* PlantUML can occasionally display sponsored or advertising messages. Those
* messages are usually generated on welcome or error images and never on
* functional diagrams.
* See https://plantuml.com/professional if you want to remove them
*
* Images (whatever their format : PNG, SVG, EPS...) generated by running PlantUML
* are owned by the author of their corresponding sources code (that is, their
* textual description in PlantUML language). Those images are not covered by
* this MIT license.
*
* The generated images can then be used without any reference to the MIT license.
* It is not even necessary to stipulate that they have been generated with PlantUML,
* although this will be appreciated by the PlantUML team.
*
* There is an exception : if the textual description in PlantUML language is also covered
* by any license, then the generated images are logically covered
* by the very same license.
*
* This is the IGY distribution (Install GraphViz by Yourself).
* You have to install GraphViz and to setup the GRAPHVIZ_DOT environment variable
* (see https://plantuml.com/graphviz-dot )
*
* Icons provided by OpenIconic : https://useiconic.com/open
* Archimate sprites provided by Archi : http://www.archimatetool.com
* Stdlib AWS provided by https://github.com/milo-minderbinder/AWS-PlantUML
* Stdlib Icons provided https://github.com/tupadr3/plantuml-icon-font-sprites
* ASCIIMathML (c) Peter Jipsen http://www.chapman.edu/~jipsen
* ASCIIMathML (c) David Lippman http://www.pierce.ctc.edu/dlippman
* CafeUndZopfli ported by Eugene Klyuchnikov https://github.com/eustas/CafeUndZopfli
* Brotli (c) by the Brotli Authors https://github.com/google/brotli
* Themes (c) by Brett Schwarz https://github.com/bschwarz/puml-themes
* Twemoji (c) by Twitter at https://twemoji.twitter.com/
*
*/
package net.sourceforge.plantuml.klimt.drawing.g2d;
/*
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
import java.awt.Rectangle;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.awt.geom.Arc2D;
import java.awt.geom.GeneralPath;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.util.Arrays;
import net.sourceforge.plantuml.klimt.geom.XPoint2D;
import net.sourceforge.plantuml.log.Logme;
/**
* The ExtendedGeneralPath
class represents a geometric path
* constructed from straight lines, quadratic and cubic (Bezier) curves and
* elliptical arc. This class delegates lines and curves to an enclosed
* GeneralPath
. Elliptical arc is implemented using an
* Arc2D
in double precision.
*
*
* Warning : An elliptical arc may be composed of several path segments.
* For further details, see the SVG Appendix F.6
*
* @author Thierry Kormann
* @version $Id: ExtendedGeneralPath.java 594018 2007-11-12 04:17:41Z cam $
*/
public class ExtendedGeneralPath implements Shape, Cloneable {
/** The enclosed general path. */
private GeneralPath path;
private int numVals = 0;
private int numSeg = 0;
private double[] values = null;
private int[] types = null;
private double mx;
private double my;
private double cx;
private double cy;
/**
* Constructs a new ExtendedGeneralPath
.
*/
public ExtendedGeneralPath() {
path = new GeneralPath();
}
/**
* Constructs a new ExtendedGeneralPath
with the specified winding
* rule to control operations that require the interior of the path to be
* defined.
*/
public ExtendedGeneralPath(int rule) {
path = new GeneralPath(rule);
}
/**
* Constructs a new ExtendedGeneralPath
object with the specified
* winding rule and the specified initial capacity to store path coordinates.
*/
public ExtendedGeneralPath(int rule, int initialCapacity) {
path = new GeneralPath(rule, initialCapacity);
}
/**
* Constructs a new ExtendedGeneralPath
object from an arbitrary
* Shape
object.
*/
public ExtendedGeneralPath(Shape s) {
this();
append(s, false);
}
/**
* Adds an elliptical arc, defined by two radii, an angle from the x-axis, a
* flag to choose the large arc or not, a flag to indicate if we increase or
* decrease the angles and the final point of the arc.
*
* @param rx the x radius of the ellipse
* @param ry the y radius of the ellipse
*
* @param angle the angle from the x-axis of the current coordinate
* system to the x-axis of the ellipse in degrees.
*
* @param largeArcFlag the large arc flag. If true the arc spanning less than or
* equal to 180 degrees is chosen, otherwise the arc
* spanning greater than 180 degrees is chosen
*
* @param sweepFlag the sweep flag. If true the line joining center to arc
* sweeps through decreasing angles otherwise it sweeps
* through increasing angles
*
* @param x the absolute x coordinate of the final point of the arc.
* @param y the absolute y coordinate of the final point of the arc.
*/
public void arcTo(double rx, double ry, double angle, boolean largeArcFlag, boolean sweepFlag, double x, double y) {
// Ensure radii are valid
if (rx == 0 || ry == 0) {
lineTo(x, y);
return;
}
checkMoveTo(); // check if prev command was moveto
// Get the current (x, y) coordinates of the path
final double x0 = cx;
final double y0 = cy;
if (x0 == x && y0 == y) {
// If the endpoints (x, y) and (x0, y0) are identical, then this
// is equivalent to omitting the elliptical arc segment entirely.
return;
}
final Arc2D arc = computeArc(x0, y0, rx, ry, angle, largeArcFlag, sweepFlag, x, y);
if (arc == null) {
return;
}
final AffineTransform t = AffineTransform.getRotateInstance(Math.toRadians(angle), arc.getCenterX(),
arc.getCenterY());
final Shape s = t.createTransformedShape(arc);
path.append(s, true);
makeRoom(7);
types[numSeg++] = ExtendedPathIterator.SEG_ARCTO;
values[numVals++] = rx;
values[numVals++] = ry;
values[numVals++] = angle;
values[numVals++] = largeArcFlag ? 1 : 0;
values[numVals++] = sweepFlag ? 1 : 0;
cx = values[numVals++] = x;
cy = values[numVals++] = y;
}
/**
* This constructs an unrotated Arc2D from the SVG specification of an
* Elliptical arc. To get the final arc you need to apply a rotation transform
* such as:
*
* AffineTransform.getRotateInstance (angle, arc.getX()+arc.getWidth()/2,
* arc.getY()+arc.getHeight()/2);
*/
public static Arc2D computeArc(double x0, double y0, double rx, double ry, double angle, boolean largeArcFlag,
boolean sweepFlag, double x, double y) {
//
// Elliptical arc implementation based on the SVG specification notes
//
// Compute the half distance between the current and the final point
final double dx2 = (x0 - x) / 2.0;
final double dy2 = (y0 - y) / 2.0;
// Convert angle from degrees to radians
angle = Math.toRadians(angle % 360.0);
final double cosAngle = Math.cos(angle);
final double sinAngle = Math.sin(angle);
//
// Step 1 : Compute (x1, y1)
//
final double x1 = cosAngle * dx2 + sinAngle * dy2;
final double y1 = -sinAngle * dx2 + cosAngle * dy2;
// Ensure radii are large enough
rx = Math.abs(rx);
ry = Math.abs(ry);
double prx = rx * rx;
double pry = ry * ry;
final double px1 = x1 * x1;
final double py1 = y1 * y1;
// check that radii are large enough
final double radiiCheck = px1 / prx + py1 / pry;
if (radiiCheck > 1) {
rx = Math.sqrt(radiiCheck) * rx;
ry = Math.sqrt(radiiCheck) * ry;
prx = rx * rx;
pry = ry * ry;
}
//
// Step 2 : Compute (cx1, cy1)
//
double sign = (largeArcFlag == sweepFlag) ? -1 : 1;
double sq = ((prx * pry) - (prx * py1) - (pry * px1)) / ((prx * py1) + (pry * px1));
sq = (sq < 0) ? 0 : sq;
final double coef = sign * Math.sqrt(sq);
final double cx1 = coef * ((rx * y1) / ry);
final double cy1 = coef * -((ry * x1) / rx);
//
// Step 3 : Compute (cx, cy) from (cx1, cy1)
//
final double sx2 = (x0 + x) / 2.0;
final double sy2 = (y0 + y) / 2.0;
final double cx = sx2 + (cosAngle * cx1 - sinAngle * cy1);
final double cy = sy2 + (sinAngle * cx1 + cosAngle * cy1);
//
// Step 4 : Compute the angleStart (angle1) and the angleExtent (dangle)
//
final double ux = (x1 - cx1) / rx;
final double uy = (y1 - cy1) / ry;
final double vx = (-x1 - cx1) / rx;
final double vy = (-y1 - cy1) / ry;
// Compute the angle start
double n = Math.sqrt((ux * ux) + (uy * uy));
double p = ux; // (1 * ux) + (0 * uy)
sign = (uy < 0) ? -1.0 : 1.0;
double angleStart = Math.toDegrees(sign * Math.acos(p / n));
// Compute the angle extent
n = Math.sqrt((ux * ux + uy * uy) * (vx * vx + vy * vy));
p = ux * vx + uy * vy;
sign = (ux * vy - uy * vx < 0) ? -1.0 : 1.0;
double angleExtent = Math.toDegrees(sign * Math.acos(p / n));
if (!sweepFlag && angleExtent > 0) {
angleExtent -= 360f;
} else if (sweepFlag && angleExtent < 0) {
angleExtent += 360f;
}
angleExtent %= 360f;
angleStart %= 360f;
//
// We can now build the resulting Arc2D in double precision
//
final Arc2D.Double arc = new Arc2D.Double();
arc.x = cx - rx;
arc.y = cy - ry;
arc.width = rx * 2.0;
arc.height = ry * 2.0;
arc.start = -angleStart;
arc.extent = -angleExtent;
return arc;
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void moveTo(double x, double y) {
// Don't add moveto to general path unless there is a reason.
makeRoom(2);
types[numSeg++] = PathIterator.SEG_MOVETO;
cx = mx = values[numVals++] = x;
cy = my = values[numVals++] = y;
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void lineTo(double x, double y) {
checkMoveTo(); // check if prev command was moveto
path.lineTo(x, y);
makeRoom(2);
types[numSeg++] = PathIterator.SEG_LINETO;
cx = values[numVals++] = x;
cy = values[numVals++] = y;
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void quadTo(double x1, double y1, double x2, double y2) {
checkMoveTo(); // check if prev command was moveto
path.quadTo(x1, y1, x2, y2);
makeRoom(4);
types[numSeg++] = PathIterator.SEG_QUADTO;
values[numVals++] = x1;
values[numVals++] = y1;
cx = values[numVals++] = x2;
cy = values[numVals++] = y2;
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void curveTo(double x1, double y1, double x2, double y2, double x3, double y3) {
checkMoveTo(); // check if prev command was moveto
path.curveTo(x1, y1, x2, y2, x3, y3);
makeRoom(6);
types[numSeg++] = PathIterator.SEG_CUBICTO;
values[numVals++] = x1;
values[numVals++] = y1;
values[numVals++] = x2;
values[numVals++] = y2;
cx = values[numVals++] = x3;
cy = values[numVals++] = y3;
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void closePath() {
// Don't double close path.
if (numSeg != 0 && types[numSeg - 1] == PathIterator.SEG_CLOSE) {
return;
}
// Only close path if the previous command wasn't a moveto
if (numSeg != 0 && types[numSeg - 1] != PathIterator.SEG_MOVETO) {
path.closePath();
}
makeRoom(0);
types[numSeg++] = PathIterator.SEG_CLOSE;
cx = mx;
cy = my;
}
/**
* Checks if previous command was a moveto command, skipping a close command (if
* present).
*/
protected void checkMoveTo() {
if (numSeg == 0) {
return;
}
switch (types[numSeg - 1]) {
case PathIterator.SEG_MOVETO:
path.moveTo(values[numVals - 2], values[numVals - 1]);
break;
case PathIterator.SEG_CLOSE:
if (numSeg == 1) {
return;
}
if (types[numSeg - 2] == PathIterator.SEG_MOVETO) {
path.moveTo(values[numVals - 2], values[numVals - 1]);
}
break;
default:
break;
}
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void append(Shape s, boolean connect) {
append(s.getPathIterator(new AffineTransform()), connect);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void append(PathIterator pi, boolean connect) {
final double[] vals = new double[6];
while (!pi.isDone()) {
Arrays.fill(vals, 0);
int type = pi.currentSegment(vals);
pi.next();
if (connect && numVals != 0) {
if (type == PathIterator.SEG_MOVETO) {
final double x = vals[0];
final double y = vals[1];
if (x != cx || y != cy) {
// Change MOVETO to LINETO.
type = PathIterator.SEG_LINETO;
} else {
// Redundant segment (move to current loc) drop it...
if (pi.isDone()) {
break; // Nothing interesting
}
type = pi.currentSegment(vals);
pi.next();
}
}
connect = false;
}
switch (type) {
case PathIterator.SEG_CLOSE:
closePath();
break;
case PathIterator.SEG_MOVETO:
moveTo(vals[0], vals[1]);
break;
case PathIterator.SEG_LINETO:
lineTo(vals[0], vals[1]);
break;
case PathIterator.SEG_QUADTO:
quadTo(vals[0], vals[1], vals[2], vals[3]);
break;
case PathIterator.SEG_CUBICTO:
curveTo(vals[0], vals[1], vals[2], vals[3], vals[4], vals[5]);
break;
}
}
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void append(ExtendedPathIterator epi, boolean connect) {
final double[] vals = new double[7];
while (!epi.isDone()) {
Arrays.fill(vals, 0);
int type = epi.currentSegment(vals);
epi.next();
if (connect && numVals != 0) {
if (type == PathIterator.SEG_MOVETO) {
final double x = vals[0];
final double y = vals[1];
if ((x != cx) || (y != cy)) {
// Change MOVETO to LINETO.
type = PathIterator.SEG_LINETO;
} else {
// Redundant segment (move to current loc) drop it...
if (epi.isDone()) {
break; // Nothing interesting
}
type = epi.currentSegment(vals);
epi.next();
}
}
connect = false;
}
switch (type) {
case PathIterator.SEG_CLOSE:
closePath();
break;
case PathIterator.SEG_MOVETO:
moveTo(vals[0], vals[1]);
break;
case PathIterator.SEG_LINETO:
lineTo(vals[0], vals[1]);
break;
case PathIterator.SEG_QUADTO:
quadTo(vals[0], vals[1], vals[2], vals[3]);
break;
case PathIterator.SEG_CUBICTO:
curveTo(vals[0], vals[1], vals[2], vals[3], vals[4], vals[5]);
break;
case ExtendedPathIterator.SEG_ARCTO:
arcTo(vals[0], vals[1], vals[2], vals[3] != 0, vals[4] != 0, vals[5], vals[6]);
break;
}
}
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public int getWindingRule() {
return path.getWindingRule();
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void setWindingRule(int rule) {
path.setWindingRule(rule);
}
/**
* get the current position or null
.
*/
public XPoint2D getCurrentPoint() {
if (numVals == 0) {
return null;
}
return new XPoint2D(cx, cy);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void reset() {
path.reset();
numSeg = 0;
numVals = 0;
values = null;
types = null;
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public void transform(AffineTransform at) {
if (at.getType() != AffineTransform.TYPE_IDENTITY) {
throw new IllegalArgumentException("ExtendedGeneralPaths can not be transformed");
}
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public Shape createTransformedShape(AffineTransform at) {
return path.createTransformedShape(at);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public Rectangle getBounds() {
return path.getBounds();
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public Rectangle2D getBounds2D() {
return path.getBounds2D();
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public boolean contains(double x, double y) {
return path.contains(x, y);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public boolean contains(Point2D p) {
return path.contains(p);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public boolean contains(double x, double y, double w, double h) {
return path.contains(x, y, w, h);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public boolean contains(Rectangle2D r) {
return path.contains(r);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public boolean intersects(double x, double y, double w, double h) {
return path.intersects(x, y, w, h);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public boolean intersects(Rectangle2D r) {
return path.intersects(r);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public PathIterator getPathIterator(AffineTransform at) {
return path.getPathIterator(at);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public PathIterator getPathIterator(AffineTransform at, double flatness) {
return path.getPathIterator(at, flatness);
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public ExtendedPathIterator getExtendedPathIterator() {
return new EPI();
}
class EPI implements ExtendedPathIterator {
private int segNum = 0;
private int valsIdx = 0;
public int currentSegment() {
return types[segNum];
}
public int currentSegment(double[] coords) {
final int ret = types[segNum];
switch (ret) {
case SEG_CLOSE:
break;
case SEG_MOVETO:
case SEG_LINETO:
coords[0] = values[valsIdx];
coords[1] = values[valsIdx + 1];
break;
case SEG_QUADTO:
coords[0] = values[valsIdx];
coords[1] = values[valsIdx + 1];
coords[2] = values[valsIdx + 2];
coords[3] = values[valsIdx + 3];
break;
case SEG_CUBICTO:
coords[0] = values[valsIdx];
coords[1] = values[valsIdx + 1];
coords[2] = values[valsIdx + 2];
coords[3] = values[valsIdx + 3];
coords[4] = values[valsIdx + 4];
coords[5] = values[valsIdx + 5];
break;
case SEG_ARCTO:
coords[0] = values[valsIdx];
coords[1] = values[valsIdx + 1];
coords[2] = values[valsIdx + 2];
coords[3] = values[valsIdx + 3];
coords[4] = values[valsIdx + 4];
coords[5] = values[valsIdx + 5];
coords[6] = values[valsIdx + 6];
break;
}
return ret;
}
public int getWindingRule() {
return path.getWindingRule();
}
public boolean isDone() {
return segNum == numSeg;
}
public void next() {
final int type = types[segNum++];
switch (type) {
case SEG_CLOSE:
break;
case SEG_MOVETO: // fallthrough is intended
case SEG_LINETO:
valsIdx += 2;
break;
case SEG_QUADTO:
valsIdx += 4;
break;
case SEG_CUBICTO:
valsIdx += 6;
break;
case SEG_ARCTO:
valsIdx += 7;
break;
}
}
}
/**
* Delegates to the enclosed GeneralPath
.
*/
public Object clone() {
try {
final ExtendedGeneralPath result = (ExtendedGeneralPath) super.clone();
result.path = (GeneralPath) path.clone();
if (values != null) {
result.values = new double[values.length];
System.arraycopy(values, 0, result.values, 0, values.length);
}
result.numVals = numVals;
if (types != null) {
result.types = new int[types.length];
System.arraycopy(types, 0, result.types, 0, types.length);
}
result.numSeg = numSeg;
return result;
} catch (CloneNotSupportedException ex) {
Logme.error(ex);
}
return null;
}
/**
* Make sure, that the requested number of slots in vales[] are available. Must
* be called even for numValues = 0, because it is also used for initialization
* of those arrays.
*
* @param numValues number of requested coordinates
*/
private void makeRoom(int numValues) {
if (values == null) {
values = new double[2 * numValues];
types = new int[2];
numVals = 0;
numSeg = 0;
return;
}
final int newSize = numVals + numValues;
if (newSize > values.length) {
int nlen = values.length * 2;
if (nlen < newSize) {
nlen = newSize;
}
final double[] nvals = new double[nlen];
System.arraycopy(values, 0, nvals, 0, numVals);
values = nvals;
}
if (numSeg == types.length) {
final int[] ntypes = new int[types.length * 2];
System.arraycopy(types, 0, ntypes, 0, types.length);
types = ntypes;
}
}
}