gen.lib.pathplan.solvers__c Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of plantuml-mit Show documentation
Show all versions of plantuml-mit Show documentation
PlantUML is a component that allows to quickly write diagrams from text.
// THIS FILE HAS BEEN GENERATED BY A PREPROCESSOR.
package gen.lib.pathplan;
import static smetana.core.debug.SmetanaDebug.ENTERING;
import static smetana.core.debug.SmetanaDebug.LEAVING;
import gen.annotation.Original;
import gen.annotation.Unused;
public class solvers__c {
//3 2rap7a11ad4ugnphkh9gbn4xl
// int solve3(double *coeff, double *roots)
@Unused
@Original(version="2.38.0", path="lib/pathplan/solvers.c", name="solve3", key="2rap7a11ad4ugnphkh9gbn4xl", definition="int solve3(double *coeff, double *roots)")
public static int solve3(double coeff[], double roots[]) {
ENTERING("2rap7a11ad4ugnphkh9gbn4xl","solve3");
try {
double a, b, c, d;
int rootn, i;
double p, q, disc, b_over_3a, c_over_a, d_over_a;
double r, theta, temp, alpha, beta;
a = coeff[3]; b = coeff[2]; c = coeff[1]; d = coeff[0];
if ((((a) < 1E-7) && ((a) > -1E-7)))
return solve2(coeff, roots);
b_over_3a = b / (3 * a);
c_over_a = c / a;
d_over_a = d / a;
p = b_over_3a * b_over_3a;
q = 2 * b_over_3a * p - b_over_3a * c_over_a + d_over_a;
p = c_over_a / 3 - p;
disc = q * q + 4 * p * p * p;
if (disc < 0) {
r = .5 * Math.sqrt(-disc + q * q);
theta = Math.atan2(Math.sqrt(-disc), -q);
temp = 2 * ((r < 0) ? (-1*Math.pow(-r, 1.0/3.0)) : Math.pow(r, 1.0/3.0));
roots[0] = temp * Math.cos(theta / 3);
roots[1] = temp * Math.cos((theta + 3.14159265358979323846 + 3.14159265358979323846) / 3);
roots[2] = temp * Math.cos((theta - 3.14159265358979323846 - 3.14159265358979323846) / 3);
rootn = 3;
} else {
alpha = .5 * (Math.sqrt(disc) - q);
beta = -q - alpha;
roots[0] = ((alpha < 0) ? (-1*Math.pow(-alpha, 1.0/3.0)) : Math.pow(alpha, 1.0/3.0)) + ((beta < 0) ? (-1*Math.pow(-beta, 1.0/3.0)) : Math.pow(beta, 1.0/3.0));
if (disc > 0)
rootn = 1;
else
{roots[1] = roots[2] = -.5 * roots[0]; rootn = 3;}
}
for (i = 0; i < rootn; i++)
roots[i] -= b_over_3a;
return rootn;
} finally {
LEAVING("2rap7a11ad4ugnphkh9gbn4xl","solve3");
}
}
//3 9b5238tdddphds1x726z0osdm
// int solve2(double *coeff, double *roots)
@Unused
@Original(version="2.38.0", path="lib/pathplan/solvers.c", name="solve2", key="9b5238tdddphds1x726z0osdm", definition="int solve2(double *coeff, double *roots)")
public static int solve2(double coeff[], double roots[]) {
ENTERING("9b5238tdddphds1x726z0osdm","solve2");
try {
double a, b, c;
double disc, b_over_2a, c_over_a;
a = coeff[2]; b = coeff[1]; c = coeff[0];
if ((((a) < 1E-7) && ((a) > -1E-7)))
return solve1(coeff, roots);
b_over_2a = b / (2 * a);
c_over_a = c / a;
disc = b_over_2a * b_over_2a - c_over_a;
if (disc < 0)
return 0;
else if (disc == 0) {
roots[0] = -b_over_2a;
return 1;
} else {
roots[0] = -b_over_2a + Math.sqrt(disc);
roots[1] = -2 * b_over_2a - roots[0];
return 2;
}
} finally {
LEAVING("9b5238tdddphds1x726z0osdm","solve2");
}
}
//3 8xtqt7j6wyxc1b6tj0qtcu1rd
// int solve1(double *coeff, double *roots)
@Unused
@Original(version="2.38.0", path="lib/pathplan/solvers.c", name="solve1", key="8xtqt7j6wyxc1b6tj0qtcu1rd", definition="int solve1(double *coeff, double *roots)")
public static int solve1(double coeff[], double roots[]) {
ENTERING("8xtqt7j6wyxc1b6tj0qtcu1rd","solve1");
try {
double a, b;
a = coeff[1]; b = coeff[0];
if ((((a) < 1E-7) && ((a) > -1E-7))) {
if ((((b) < 1E-7) && ((b) > -1E-7)))
return 4;
else
return 0;
}
roots[0] = -b / a;
return 1;
} finally {
LEAVING("8xtqt7j6wyxc1b6tj0qtcu1rd","solve1");
}
}
}