All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ctreber.acearth.util.Coordinate Maven / Gradle / Ivy

Go to download

PlantUML is a component that allows to quickly write : * sequence diagram, * use case diagram, * class diagram, * activity diagram, * component diagram, * state diagram * object diagram

There is a newer version: 8059
Show newest version
package com.ctreber.acearth.util;

import java.io.IOException;
import java.io.Writer;

/**
 * 

* Latitude and longitude coordinate. Can be used as declination and right * ascension as well. * *

* © 2002 Christian Treber, [email protected] * * @author Christian Treber, [email protected] * */ public class Coordinate { /* * MeanObliquity gives the mean obliquity of the earth's axis at epoch * 1990.0 (computed as 23.440592 degrees according to the method given in * duffett-smith, section 27) */ private static final double MEAN_OBLIQUITY = 23.440592 * Toolkit.TWOPI / 360; // Or DE private double fLat; // Or RA private double fLong; public Coordinate() { } /** *

* Construct a location specfied by two angles. Your choice if in degrees or * rads, but keep track! * * @param pLong * Longitude or RA * @param pLat * Latitude or DE */ public Coordinate(double pLat, double pLong) { fLat = pLat; fLong = pLong; } public void renderAsXML(Writer writer) throws IOException { writer.write("\n"); writer.write(" " + fLat + "\n"); writer.write(" " + fLong + "\n"); writer.write("\n"); } public Point3D getPoint3D() { final double lLatRad = Toolkit.degsToRads(fLat); final double lLongRad = Toolkit.degsToRads(fLong); final double lX = Math.cos(lLatRad) * Math.sin(lLongRad); final double lY = Math.sin(lLatRad); final double lZ = Math.cos(lLatRad) * Math.cos(lLongRad); return new Point3D(lX, lY, lZ); } /** *

* Assumes coordinate is not in degrees but rads. * * @return */ public Point3D getPoint3DRads() { final double lX = Math.cos(fLat) * Math.sin(fLong); final double lY = Math.sin(fLat); final double lZ = Math.cos(fLat) * Math.cos(fLong); return new Point3D(lX, lY, lZ); } /** *

* Convert from ecliptic to equatorial coordinates (after duffett-smith, * section 27) */ public Coordinate eclipticToEquatorial() { final double sin_e = Math.sin(MEAN_OBLIQUITY); final double cos_e = Math.cos(MEAN_OBLIQUITY); final double lRA = Math.atan2(Math.sin(fLong) * cos_e - Math.tan(fLat) * sin_e, Math.cos(fLong)); final double lDE = Math.asin(Math.sin(fLat) * cos_e + Math.cos(fLat) * sin_e * Math.sin(fLong)); return new Coordinate(lDE, lRA); } /** *

* Add position to this position, make sure coordinates are valid. */ public void add(Coordinate lOther) { fLat += lOther.fLat; fLong += lOther.fLong; wrap(); } /** *

* Warp coordinates exceeding valid values. Happens when latitudes and * longitudes are added or substracted. */ public void wrap() { if (fLat > 90) { fLat = 180 - fLat; fLong += 180; } else if (fLat < -90) { fLat = -180 - fLat; fLong += 180; } if (fLong > 180) { do { fLong -= 360; } while (fLong > 180); } else if (fLong < -180) { do { fLong += 360; } while (fLong < -180); } } public double getLat() { return fLat; } public double getDE() { return fLat; } public double getLong() { return fLong; } public double getRA() { return fLong; } public boolean check() { return (-90 <= fLat) && (fLat <= 90) && (-180 <= fLong) && (fLong <= 180); } public String toString() { return "lat: " + fLat + ", long: " + fLong; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy