All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ctreber.acearth.projection.Projection Maven / Gradle / Ivy

Go to download

PlantUML is a component that allows to quickly write : * sequence diagram, * use case diagram, * class diagram, * activity diagram, * component diagram, * state diagram * object diagram

The newest version!
package com.ctreber.acearth.projection;

import com.ctreber.acearth.util.Coordinate;
import com.ctreber.acearth.util.Point2D;
import com.ctreber.acearth.util.Point3D;
import com.ctreber.acearth.util.Toolkit;

/**
 * 

A projection for a globe on a flat surface (must be subclassed). * *

© 2002 Christian Treber, [email protected] * @author Christian Treber, [email protected] * */ abstract public class Projection { // Target information int fImageHeight; int fImageWidth; private double fXOffset; private double fYOffset; //Viewing information private int fShiftX; private int fShiftY; double fScale; private Coordinate fViewPos; /**

In rads */ private double fViewRotation; double fViewMagnification; //Transformation matrix parameters */ private double fCosLat; private double fSinLat; private double fCosLon; private double fSinLon; private double fCosRot; private double fSinRot; /** *

Initialize transform parameters, set offset to center of image * (plus shifts), set scale */ public void initTransformTable() { // Set transformation parameters fCosLat = Math.cos(Toolkit.degsToRads(fViewPos.getLat())); fSinLat = Math.sin(Toolkit.degsToRads(fViewPos.getLat())); fCosLon = Math.cos(Toolkit.degsToRads(fViewPos.getLong())); fSinLon = Math.sin(Toolkit.degsToRads(fViewPos.getLong())); fCosRot = Math.cos(Toolkit.degsToRads(fViewRotation)); fSinRot = Math.sin(Toolkit.degsToRads(fViewRotation)); fXOffset = (double)fImageWidth / 2 + fShiftX; fYOffset = (double)fImageHeight / 2 + fShiftY; setScale(); } abstract protected void setScale(); /** *

Project 3D point on y axis. */ abstract public double projectY(double pY); abstract public double inverseProjectY(double pY); /** *

Project 3D point on x axis. */ abstract protected double projectX(double pX, double pZ); abstract public double inverseProjectX(double pX); public abstract boolean isVisible(Point3D pPoint); public boolean isWithinImage(Point2D pPoint) { return (pPoint.getX() >= 0) && (pPoint.getX() < fImageWidth) && (pPoint.getY() >= 0) && (pPoint.getY() < fImageHeight); } /** *

Translate screen point into coordinate on Earth. * * @param pX * @param pY * @return */ abstract public Coordinate getLocation(int pX, int pY); /** *

Imagine view the globe, N is up, S is down, and N0E0 is in the center. * x is right/left, y is up/down, and z is front/rear. * *

Map points are located on the surface of a unit sphere (diameter = 1). * Latitude is the angle between x and y or z and y. Longitude is the angle * between x and z. * *

Why? The way we choose our global coordinate system, longitude circles * (latidude variable) always have the same size while the size of * latidude circles (longitude variable) depends on the latitude. * * @param pPoint * @return */ public Point2D project2D(Point3D pPoint) { return new Point2D(projectX(pPoint.getX(), pPoint.getZ()), projectY(pPoint.getY())); } public Point2D finalize(Point2D pPoint) { return new Point2D(finalizeX(pPoint.getX()), finalizeY(pPoint.getY())); } /** *

Since the final mapping is relative to the center of the image * -PI and PI get mapped to the left and right border respectively. * But see ProjectionOrtho.setScale(). */ public double finalizeX(double pX) { return fXOffset + fScale * pX; } /** *

Since the final mapping is relative to the center of the image * -PI and PI get mapped to the bottom and top border respectively. * But see ProjectionOrtho.setScale(). */ public double finalizeY(double pY) { return fYOffset - fScale * pY; } /** *

Transform screen to image coordinates. */ public double inverseFinalizeX(double x) { return (x - fXOffset) / fScale; } /** *

Transform screen to image coordinates. */ public double inverseFinalizeY(double y) { return (fYOffset - y) / fScale; } /** *

Rotate the point according to the current rotation of Earth. */ public Point3D rotate(Point3D pPoint) { double lX = pPoint.getX(); double lY = pPoint.getY(); double lZ = pPoint.getZ(); // Do NOT inline vars - it does not work (just inline _t_ for a try). double _c_ = fCosLon; double _s_ = fSinLon; double _t_ = _c_ * lX - _s_ * lZ; lZ = _s_ * lX + _c_ * lZ; lX = _t_; _c_ = fCosLat; _s_ = fSinLat; _t_ = (_c_ * lY) - (_s_ * lZ); lZ = (_s_ * lY) + (_c_ * lZ); lY = _t_; _c_ = fCosRot; _s_ = fSinRot; _t_ = (_c_ * lX) - (_s_ * lY); lY = (_s_ * lX) + (_c_ * lY); lX = _t_; return new Point3D(lX, lY, lZ); } public Point3D rotateReverse(Point3D pPoint) { // Set transformation parameters final double fCosLat = Math.cos(Toolkit.degsToRads(-fViewPos.getLat())); final double fSinLat = Math.sin(Toolkit.degsToRads(-fViewPos.getLat())); final double fCosLon = Math.cos(Toolkit.degsToRads(-fViewPos.getLong())); final double fSinLon = Math.sin(Toolkit.degsToRads(-fViewPos.getLong())); final double fCosRot = Math.cos(Toolkit.degsToRads(-fViewRotation)); final double fSinRot = Math.sin(Toolkit.degsToRads(-fViewRotation)); double lX = pPoint.getX(); double lY = pPoint.getY(); double lZ = pPoint.getZ(); // Do NOT inline vars - it does not work (just inline lTmp for a try). double lCosFac; double lSinFac; double lTmp; // Note that the order of the three rotation had to be reversed as well. lCosFac = fCosRot; lSinFac = fSinRot; lTmp = (lCosFac * lX) - (lSinFac * lY); lY = (lSinFac * lX) + (lCosFac * lY); lX = lTmp; lCosFac = fCosLat; lSinFac = fSinLat; lTmp = (lCosFac * lY) - (lSinFac * lZ); lZ = (lSinFac * lY) + (lCosFac * lZ); lY = lTmp; lCosFac = fCosLon; lSinFac = fSinLon; lTmp = (lCosFac * lX) - (lSinFac * lZ); lZ = (lSinFac * lX) + (lCosFac * lZ); lX = lTmp; return new Point3D(lX, lY, lZ); } public double getScale() { return fScale; } public Coordinate getViewPos() { return fViewPos; } public void setViewMagnification(double pViewMagnification) { fViewMagnification = pViewMagnification; setScale(); } public void setViewPos(Coordinate pViewPos) { fViewPos = pViewPos; } public void setShiftX(int pX) { fShiftX = pX; } public void setShiftY(int pY) { fShiftY = pY; } public void setViewRotation(double pViewRotation) { fViewRotation = pViewRotation; } public void setImageWidth(int pImageWidth) { fImageWidth = pImageWidth; } public void setImageHeight(int pImageHeight) { fImageHeight = pImageHeight; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy