All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.ctreber.acearth.util.SunPositionCalculator Maven / Gradle / Ivy

Go to download

PlantUML is a component that allows to quickly write : * sequence diagram, * use case diagram, * class diagram, * activity diagram, * component diagram, * state diagram * object diagram

The newest version!
package com.ctreber.acearth.util;

import java.util.Calendar;
import java.util.Date;
import java.util.TimeZone;

/**
 * 

Calculates the position of the point on Earth which is directly * below the sun or the moon. * *

© 2002 Christian Treber, [email protected] * @author Christian Treber, [email protected] * */ public class SunPositionCalculator { /* * the epoch upon which these astronomical calculations are based is * 1990 january 0.0, 631065600 seconds since the beginning of the * "unix epoch" (00:00:00 GMT, Jan. 1, 1970) * * given a number of seconds since the start of the unix epoch, * daysSinceEpoch() computes the number of days since the start of the * astronomical epoch (1990 january 0.0) */ private static final long EPOCH_START = 631065600000l; /* * assuming the apparent orbit of the sun about the earth is circular, * the rate at which the orbit progresses is given by RadsPerDay -- * TWOPI radians per orbit divided by 365.242191 days per year: */ private static final double RADS_PER_DAY = Toolkit.TWOPI / 365.242191; /* * details of sun's apparent orbit at epoch 1990.0 (after * duffett-smith, table 6, section 46) * * Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees * OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees * Eccentricity (eccentricity of orbit) 0.016713 */ private static final double EPSILON_G = Toolkit.degsToRads(279.403303); private static final double OMEGA_BAR_G = Toolkit.degsToRads(282.768422); private static final double ECCENTRICITY = 0.016713; /* * Lunar parameters, epoch January 0, 1990.0 */ private static final double MOON_MEAN_LONGITUDE = Toolkit.degsToRads(318.351648); private static final double MOON_MEAN_LONGITUDE_PERIGEE = Toolkit.degsToRads(36.340410); private static final double MOON_MEAN_LONGITUDE_NODE = Toolkit.degsToRads(318.510107); private static final double MOON_INCLINATION = Toolkit.degsToRads(5.145396); private static final double SIDERAL_MONTH = 27.3217; /** *

Calculate the position of the mean sun: where the sun would * be if the earth's orbit were circular instead of ellipictal. * *

Verified. * * @param pDays days since ephemeris epoch */ private static double getMeanSunLongitude(double pDays) { double N, M; N = RADS_PER_DAY * pDays; N = Toolkit.fmod(N, 0, Toolkit.TWOPI); if(N < 0) { N += Toolkit.TWOPI; } M = N + EPSILON_G - OMEGA_BAR_G; if(M < 0) { M += Toolkit.TWOPI; } return M; } /** *

Compute ecliptic longitude of sun (in radians) * (after duffett-smith, section 47) * *

Verified. * * @param pMillis Milliseconds since unix epoch */ private static double getSunEclipticLongitude(long pMillis) { final double lDays = daysSinceEpoch(pMillis); final double M_sun = getMeanSunLongitude(lDays); final double E = doKepler(M_sun); final double v = 2 * Math.atan(Math.sqrt((1 + ECCENTRICITY) / (1 - ECCENTRICITY)) * Math.tan(E / 2)); return (v + OMEGA_BAR_G); } static double daysSinceEpoch(long pMillis) { return (double)(pMillis - EPOCH_START) / 24 / 3600 / 1000; } /** * solve Kepler's equation via Newton's method * (after duffett-smith, section 47) * *

Verified. */ private static double doKepler(double M) { double E; double lDelta; E = M; while(true) { lDelta = E - ECCENTRICITY * Math.sin(E) - M; if(Math.abs(lDelta) <= 1e-10) { break; } E -= lDelta / (1 - ECCENTRICITY * Math.cos(E)); } return E; } /** *

computing julian dates (assuming gregorian calendar, thus this is * only valid for dates of 1582 oct 15 or later) * (after duffett-smith, section 4) * *

Verified. * * @param pYear year (e.g. 19xx) * @param pMonth month (jan=1, feb=2, ...) * @param pDay day of month */ private static double getJulianDate(int pYear, int pMonth, int pDay) { if((pMonth == 1) || (pMonth == 2)) { pYear -= 1; pMonth += 12; } final int A = pYear / 100; final int B = 2 - A + (A / 4); final int C = (int)(365.25 * pYear); final int D = (int)(30.6001 * (pMonth + 1)); return B + C + D + pDay + 1720994.5; } /** *

compute greenwich mean sidereal time (getGST) corresponding to a given * number of milliseconds since the unix epoch * (after duffett-smith, section 12) * *

Verified. */ private static double getGST(long pMillis) { final Calendar lCal = Calendar.getInstance(TimeZone.getTimeZone("GMT")); lCal.setTime(new Date(pMillis)); final double lJulianDate = getJulianDate(lCal.get(Calendar.YEAR), lCal.get(Calendar.MONTH) + 1, lCal.get(Calendar.DAY_OF_MONTH)); final double T = (lJulianDate - 2451545) / 36525; double T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558; T0 = Toolkit.fmod(T0, 0, 24.0); if(T0 < 0) { T0 += 24; } final double UT = lCal.get(Calendar.HOUR_OF_DAY) + (lCal.get(Calendar.MINUTE) + lCal.get(Calendar.SECOND) / 60.0) / 60.0; T0 += UT * 1.002737909; T0 = Toolkit.fmod(T0, 0, 24.0); if(T0 < 0) { T0 += 24; } return T0; } /** *

Given a particular time (expressed in milliseconds since the unix * epoch), compute position on the earth (lat, lon) such that sun is * directly overhead. * *

Verified. * * @param pMillis seconds since unix epoch * */ public static Coordinate getSunPositionOnEarth(long pMillis) { final Coordinate lSunPosEc = new Coordinate(0.0, getSunEclipticLongitude(pMillis)); final Coordinate lSunPosEq = lSunPosEc.eclipticToEquatorial(); final double lRA = Toolkit.limitRads(lSunPosEq.getRA() - (Toolkit.TWOPI / 24) * getGST(pMillis)); return new Coordinate(Toolkit.radsToDegs(lSunPosEq.getDE()), Toolkit.radsToDegs(lRA)); } /** *

Given a particular time (expressed in milliseconds since the unix * epoch), compute position on the earth (lat, lon) such that the * moon is directly overhead. * * Based on duffett-smith **2nd ed** section 61; combines some steps * into single expressions to reduce the number of extra variables. * *

Verified. */ public static Coordinate getMoonPositionOnEarth(long pMillis) { final double lDays = daysSinceEpoch(pMillis); double lSunLongEc = getSunEclipticLongitude(pMillis); final double Ms = getMeanSunLongitude(lDays); double L = Toolkit.limitRads(Toolkit.fmod(lDays / SIDERAL_MONTH, 0, 1.0) * Toolkit.TWOPI + MOON_MEAN_LONGITUDE); double Mm = Toolkit.limitRads(L - Toolkit.degsToRads(0.1114041 * lDays) - MOON_MEAN_LONGITUDE_PERIGEE); double N = Toolkit.limitRads(MOON_MEAN_LONGITUDE_NODE - Toolkit.degsToRads(0.0529539 * lDays)); final double Ev = Toolkit.degsToRads(1.2739) * Math.sin(2.0 * (L - lSunLongEc) - Mm); final double Ae = Toolkit.degsToRads(0.1858) * Math.sin(Ms); Mm += Ev - Ae - Toolkit.degsToRads(0.37) * Math.sin(Ms); final double Ec = Toolkit.degsToRads(6.2886) * Math.sin(Mm); L += Ev + Ec - Ae + Toolkit.degsToRads(0.214) * Math.sin(2.0 * Mm); L += Toolkit.degsToRads(0.6583) * Math.sin(2.0 * (L - lSunLongEc)); N -= Toolkit.degsToRads(0.16) * Math.sin(Ms); L -= N; lSunLongEc = Toolkit.limitRads((Math.abs(Math.cos(L)) < 1e-12) ? (N + Math.sin(L) * Math.cos(MOON_INCLINATION) * Math.PI / 2) : (N + Math.atan2(Math.sin(L) * Math.cos(MOON_INCLINATION), Math.cos(L)))); final double lSunLatEc = Math.asin(Math.sin(L) * Math.sin(MOON_INCLINATION)); final Coordinate lSunPosEq = new Coordinate(lSunLatEc, lSunLongEc).eclipticToEquatorial(); final double lRA = Toolkit.limitRads(lSunPosEq.getRA() - (Toolkit.TWOPI / 24) * getGST(pMillis)); return new Coordinate(Toolkit.radsToDegs(lSunPosEq.getDE()), Toolkit.radsToDegs(lRA)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy