All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.zxing.common.reedsolomon.GF256 Maven / Gradle / Ivy

Go to download

PlantUML is a component that allows to quickly write : * sequence diagram, * use case diagram, * class diagram, * activity diagram, * component diagram, * state diagram * object diagram

The newest version!
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.zxing.common.reedsolomon;

/**
 * 

This class contains utility methods for performing mathematical operations over * the Galois Field GF(256). Operations use a given primitive polynomial in calculations.

* *

Throughout this package, elements of GF(256) are represented as an int * for convenience and speed (but at the cost of memory). * Only the bottom 8 bits are really used.

* * @author Sean Owen */ public final class GF256 { public static final GF256 QR_CODE_FIELD = new GF256(0x011D); // x^8 + x^4 + x^3 + x^2 + 1 public static final GF256 DATA_MATRIX_FIELD = new GF256(0x012D); // x^8 + x^5 + x^3 + x^2 + 1 private final int[] expTable; private final int[] logTable; private final GF256Poly zero; private final GF256Poly one; /** * Create a representation of GF(256) using the given primitive polynomial. * * @param primitive irreducible polynomial whose coefficients are represented by * the bits of an int, where the least-significant bit represents the constant * coefficient */ private GF256(int primitive) { expTable = new int[256]; logTable = new int[256]; int x = 1; for (int i = 0; i < 256; i++) { expTable[i] = x; x <<= 1; // x = x * 2; we're assuming the generator alpha is 2 if (x >= 0x100) { x ^= primitive; } } for (int i = 0; i < 255; i++) { logTable[expTable[i]] = i; } // logTable[0] == 0 but this should never be used zero = new GF256Poly(this, new int[]{0}); one = new GF256Poly(this, new int[]{1}); } GF256Poly getZero() { return zero; } GF256Poly getOne() { return one; } /** * @return the monomial representing coefficient * x^degree */ GF256Poly buildMonomial(int degree, int coefficient) { if (degree < 0) { throw new IllegalArgumentException(); } if (coefficient == 0) { return zero; } int[] coefficients = new int[degree + 1]; coefficients[0] = coefficient; return new GF256Poly(this, coefficients); } /** * Implements both addition and subtraction -- they are the same in GF(256). * * @return sum/difference of a and b */ static int addOrSubtract(int a, int b) { return a ^ b; } /** * @return 2 to the power of a in GF(256) */ int exp(int a) { return expTable[a]; } /** * @return base 2 log of a in GF(256) */ int log(int a) { if (a == 0) { throw new IllegalArgumentException(); } return logTable[a]; } /** * @return multiplicative inverse of a */ int inverse(int a) { if (a == 0) { throw new ArithmeticException(); } return expTable[255 - logTable[a]]; } /** * @param a * @param b * @return product of a and b in GF(256) */ int multiply(int a, int b) { if (a == 0 || b == 0) { return 0; } int logSum = logTable[a] + logTable[b]; // index is a sped-up alternative to logSum % 255 since sum // is in [0,510]. Thanks to jmsachs for the idea return expTable[(logSum & 0xFF) + (logSum >>> 8)]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy