All Downloads are FREE. Search and download functionalities are using the official Maven repository.

math.distribution.FisherF Maven / Gradle / Ivy

Go to download

Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers

The newest version!
/*
 * Copyright 2013 Stefan Zobel
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package math.distribution;

/**
 * Snedecor's F distribution.
 * 

* See Wikipedia * F-distribution. */ public class FisherF implements ContinuousDistribution { private final int d1; // numerator DF private final int d2; // denominator DF private final Beta beta; public FisherF(int numeratorDF, int denominatorDF) { if (numeratorDF < 1) { throw new IllegalArgumentException("numeratorDF < 1 : " + numeratorDF); } if (denominatorDF < 1) { throw new IllegalArgumentException("denominatorDF < 1 : " + denominatorDF); } this.d1 = numeratorDF; this.d2 = denominatorDF; this.beta = new Beta((d1 / 2.0), (d2 / 2.0)); } @Override public double pdf(double x) { if (x < 0.0) { return 0.0; } if (x == 0.0) { if (d1 == 1) { return Double.POSITIVE_INFINITY; } if (d1 == 2) { return 1.0; } return 0.0; } // A quite clever variable substitution approach: final double w = d2 / (d2 + (d1 * x)); // Fact: if X ~ F(d1, d1) then (1 - W) ~ Beta(d1/2, d2/2). // // Further note that (1): (1 - w) = (d1 / d2) * x * w // and (2): (1 / w) = 1 + (d1 / d2) * x // // First write out the density of the Beta((1-w); d1/2, d2/2) // and then substitute (1) into the resulting (1 - w) term. // // Then multiply the density by (w * w * (d1/d2)); finally // replace the remaining "w" term with the inverse of (2). // // Compare your result with the density of the F(x; d1, d2) // - both are identical! This proves that the following is // the correct transformation: return (((w * d1) * w) * beta.pdf(1.0 - w)) / d2; } @Override public double cdf(double x) { if (x <= 0.0) { return 0.0; } final double z = d1 * x; final double y = z / (d2 + z); return beta.cdf(y); } @Override public double inverseCdf(double probability) { if (probability <= 0.0) { return 0.0; } if (probability >= 1.0) { return Double.POSITIVE_INFINITY; } return findRoot(probability, mean(), 0.0, Double.MAX_VALUE); } @Override public double mean() { if (d2 <= 2) { return Double.NaN; } return d2 / ((double) d2 - 2.0); } @Override public double variance() { if (d2 <= 4) { return Double.NaN; } final double z = d2 - 2.0; return 2.0 * d2 * d2 * (d1 + z) / (d1 * z * z * (d2 - 4.0)); } public int getNumeratorDegreesOfFreedom() { return d1; } public int getDenominatorDegreesOfFreedom() { return d2; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy