All Downloads are FREE. Search and download functionalities are using the official Maven repository.

math.distribution.Weibull Maven / Gradle / Ivy

Go to download

Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers

The newest version!
/*
 * Copyright 2018 Stefan Zobel
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package math.distribution;

import math.cern.FastGamma;

/**
 * The Weibull distribution with scale parameter λ > {@code 0} and
 * shape parameter {@code k} > {@code 0}.
 * 

* See * Wikipedia * Weibull distribution. */ public class Weibull implements ContinuousDistribution { private final double scale_lambda; private final double shape_k; // helper constants private final double inverse_scale; private final double inverse_shape; private final double shape_dividedby_scale; // cached mean private double cached_mean = Double.NaN; public Weibull(double scale /* lambda */, double shape /* k */) { if (scale <= 0.0) { throw new IllegalArgumentException("scale <= 0.0"); } if (shape <= 0.0) { throw new IllegalArgumentException("shape <= 0.0"); } this.scale_lambda = scale; this.shape_k = shape; // pre-computed constants this.inverse_scale = 1.0 / scale; this.inverse_shape = 1.0 / shape; this.shape_dividedby_scale = inverse_scale * shape_k; } /** * {@inheritDoc} */ @Override public double pdf(double x) { if (x < 0.0) { return 0.0; } double xscale = x / scale_lambda; double xscalepow = Math.pow(xscale, shape_k - 1); double xscalepowshape = xscalepow * xscale; return shape_dividedby_scale * xscalepow * Math.exp(-xscalepowshape); } /** * {@inheritDoc} */ @Override public double cdf(double x) { if (x <= 0.0) { return 0.0; } double y = Math.pow(inverse_scale * x, shape_k); return -Math.expm1(-y); } /** * Inverse of the Weibull cumulative distribution function. * * @param probability * a given probability * @return the value X for which P(x<=X). */ @Override public double inverseCdf(double probability) { if (probability <= 0.0) { return 0.0; } if (probability >= 1.0) { return Double.MAX_VALUE; } return scale_lambda * Math.pow(-Math.log1p(-probability), inverse_shape); } /** * {@inheritDoc} */ @Override public double mean() { if (Double.isNaN(cached_mean)) { cached_mean = scale_lambda * Math.exp(FastGamma.logGamma(1.0 + inverse_shape)); } return cached_mean; } /** * {@inheritDoc} */ @Override public double variance() { double mean = mean(); return ((scale_lambda * scale_lambda) * Math.exp(FastGamma.logGamma(1.0 + (2.0 * inverse_shape)))) - (mean * mean); } /** * Returns the shape parameter of this distribution. * * @return the shape parameter. */ public double getShape() { return shape_k; } /** * Returns the scale parameter of this distribution. * * @return the scale parameter. */ public double getScale() { return scale_lambda; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy