math.lapack.Dgetrf Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of math-base Show documentation
Show all versions of math-base Show documentation
Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers
The newest version!
/*
* Copyright ? ???? The University of Tennessee. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* ? Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* ? Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer listed in this license in
* the documentation and/or other materials provided with the distribution.
* ? Neither the name of the copyright holders nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall the copyright owner or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages (including,
* but not limited to, procurement of substitute goods or services; loss of use,
* data, or profits; or business interruption) however caused and on any theory of
* liability, whether in contract, strict liability, or tort (including negligence
* or otherwise) arising in any way out of the use of this software, even if advised
* of the possibility of such damage.
*/
package math.lapack;
import math.gemm.Dgemm;
import math.gemm.Trans;
// DGETRF computes an LU factorization of a general M-by-N matrix A
// using partial pivoting with row interchanges.
//
// The factorization has the form
// A = P * L * U
// where P is a permutation matrix, L is lower triangular with unit
// diagonal elements (lower trapezoidal if m > n), and U is upper
// triangular (upper trapezoidal if m < n).
final class Dgetrf {
static void dgetrf(int m, int n, double[] a, int _a_offset, int lda, int[] ipiv, int _ipiv_offset,
intW info) {
info.val = 0;
if (m < 0) {
info.val = -1;
} else if (n < 0) {
info.val = -2;
} else if (lda < Math.max(1, m)) {
info.val = -4;
}
if (info.val != 0) {
Xerbla.xerbla("DGETRF", -info.val);
return;
}
// Quick return if possible
if (m == 0 || n == 0) {
return;
}
// Determine the block size for this environment
int nb = Ilaenv.ilaenv(1, "DGETRF", " ", m, n, -1, -1);
if (nb <= 1 || nb >= Math.min(m, n)) {
// Use unblocked code
Dgetf2.dgetf2(m, n, a, _a_offset, lda, ipiv, _ipiv_offset, info);
} else {
// Use blocked code
intW iinfo = new intW(0);
int j = 1;
for (int p = ((Math.min(m, n) - 1) + nb) / nb; p > 0; p--) {
int jb = Math.min((Math.min(m, n) - j) + 1, nb);
// Factor diagonal and subdiagonal blocks and test
// for exact singularity
Dgetf2.dgetf2(m - j + 1, jb, a, j - 1 + (j - 1) * lda + _a_offset, lda, ipiv, j - 1 + _ipiv_offset,
iinfo);
// Adjust INFO and the pivot indices
if (info.val == 0 && iinfo.val > 0) {
info.val = (iinfo.val + j) - 1;
}
int i = j;
for (int q = Math.min(m, j + jb - 1) - j + 1; q > 0; q--) {
ipiv[i - 1 + _ipiv_offset] = j - 1 + ipiv[i - 1 + _ipiv_offset];
i++;
}
// Apply interchanges to columns 1:J-1
Dlaswp.dlaswp(j - 1, a, _a_offset, lda, j, j + jb - 1, ipiv, _ipiv_offset, 1);
if (j + jb <= n) {
// Apply interchanges to columns J+JB:N
Dlaswp.dlaswp(n - j - jb + 1, a, (j + jb - 1) * lda + _a_offset, lda, j, j + jb - 1, ipiv,
_ipiv_offset, 1);
// Compute block row of U
Dtrsm.dtrsm("Left", "Lower", "No transpose", "Unit", jb, n - j - jb + 1, 1.0, a,
j - 1 + (j - 1) * lda + _a_offset, lda, a, j - 1 + (j + jb - 1) * lda + _a_offset, lda);
if (j + jb <= m) {
// Update trailing submatrix
Dgemm.dgemm(Trans.NO_TRANS, Trans.NO_TRANS, m - j - jb + 1, n - j - jb + 1, jb, -1.0, a,
j + jb - 1 + (j - 1) * lda + _a_offset, lda, a, j - 1 + (j + jb - 1) * lda + _a_offset,
lda, 1.0, a, j + jb - 1 + (j + jb - 1) * lda + _a_offset, lda);
}
}
j += nb;
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy