math.lapack.Dormlq Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of math-base Show documentation
Show all versions of math-base Show documentation
Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers
The newest version!
/*
* Copyright ? ???? The University of Tennessee. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* ? Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* ? Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer listed in this license in
* the documentation and/or other materials provided with the distribution.
* ? Neither the name of the copyright holders nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* This software is provided by the copyright holders and contributors "as is" and
* any express or implied warranties, including, but not limited to, the implied
* warranties of merchantability and fitness for a particular purpose are disclaimed.
* In no event shall the copyright owner or contributors be liable for any direct,
* indirect, incidental, special, exemplary, or consequential damages (including,
* but not limited to, procurement of substitute goods or services; loss of use,
* data, or profits; or business interruption) however caused and on any theory of
* liability, whether in contract, strict liability, or tort (including negligence
* or otherwise) arising in any way out of the use of this software, even if advised
* of the possibility of such damage.
*/
package math.lapack;
import math.gemm.Trans;
import math.trmm.Side;
// DORMLQ overwrites the general real M-by-N matrix C with
//
// SIDE = 'L' SIDE = 'R'
// TRANS = 'N': Q * C C * Q
// TRANS = 'T': Q**T * C C * Q**T
//
// where Q is a real orthogonal matrix defined as the product
// of k elementary reflectors
//
// Q = H(k) . . . H(2) H(1)
//
// as returned by DGELQF. Q is of order M if SIDE = 'L' and
// of order N if SIDE = 'R'.
final class Dormlq {
static void dormlq(String side, String trans, int m, int n, int k, double[] a, int _a_offset, int lda,
double[] tau, int _tau_offset, double[] c, int _c_offset, int ldc, double[] work, int _work_offset,
int lwork, intW info) {
info.val = 0;
boolean left = Lsame.lsame(side, "L");
boolean notran = Lsame.lsame(trans, "N");
boolean lquery = (lwork == -1);
// NQ is the order of Q and NW is the minimum dimension of WORK
int nq = 0;
int nw = 0;
if (left) {
nq = m;
nw = n;
} else {
nq = n;
nw = m;
}
if (!left && !Lsame.lsame(side, "R")) {
info.val = -1;
} else if (!notran && !Lsame.lsame(trans, "T")) {
info.val = -2;
} else if (m < 0) {
info.val = -3;
} else if (n < 0) {
info.val = -4;
} else if (k < 0 || k > nq) {
info.val = -5;
} else if (lda < Math.max(1, k)) {
info.val = -7;
} else if (ldc < Math.max(1, m)) {
info.val = -10;
} else if (!lquery && lwork < Math.max(1, nw)) {
info.val = -12;
}
int lwkopt = 0;
int nb = 0;
if (info.val == 0) {
// Compute the workspace requirements
nb = Math.min(nbmax, Ilaenv.ilaenv(1, "DORMLQ", side + trans, m, n, k, -1));
lwkopt = Math.max(1, nw) * nb;
work[_work_offset] = lwkopt;
}
if (info.val != 0) {
Xerbla.xerbla("DORMLQ", -info.val);
return;
}
if (lquery) {
return;
}
// Quick return if possible
if ((m == 0 || n == 0) || k == 0) {
work[_work_offset] = 1;
return;
}
int nbmin = 2;
int ldwork = nw;
if (nb > 1 && nb < k) {
if (lwork < nw * nb) {
nb = lwork / ldwork;
nbmin = Math.max(2, Ilaenv.ilaenv(2, "DORMLQ", side + trans, m, n, k, -1));
}
}
if (nb < nbmin || nb >= k) {
// Use unblocked code
Dorml2.dorml2(side, trans, m, n, k, a, _a_offset, lda, tau, _tau_offset, c, _c_offset, ldc, work,
_work_offset, refInfo);
} else {
// Use blocked code
int ni = 0;
int jc = 0;
int mi = 0;
int ic = 0;
int i1;
int i2;
int i3;
if ((left && notran) || (!left && !notran)) {
i1 = 1;
i2 = k;
i3 = nb;
} else {
i1 = ((k - 1) / nb) * nb + 1;
i2 = 1;
i3 = -nb;
}
if (left) {
ni = n;
jc = 1;
} else {
mi = m;
ic = 1;
}
Trans transt = notran ? Trans.TRANS : Trans.NO_TRANS;
double[] buffer = new double[(nbmax + 1) * nbmax];
int i = i1;
for (int p = ((i2 - i1) + i3) / i3; p > 0; p--) {
int ib = Math.min(nb, k - i + 1);
// Form the triangular factor of the block reflector
// H = H(i) H(i+1) . . . H(i+ib-1)
Dlarft.dlarft("Forward", "Rowwise", nq - i + 1, ib, a, i - 1 + (i - 1) * lda + _a_offset, lda, tau,
i - 1 + _tau_offset, buffer, 0, (nbmax + 1));
if (left) {
// H or H**T is applied to C(i:m,1:n)
mi = m - i + 1;
ic = i;
} else {
// H or H**T is applied to C(1:m,i:n)
ni = n - i + 1;
jc = i;
}
// Apply H or H**T
Side side_ = left ? Side.LEFT : Side.RIGHT;
Dlarfb.dlarfb(side_, transt, "Forward", "Rowwise", mi, ni, ib, a, i - 1 + (i - 1) * lda + _a_offset, lda,
buffer, 0, (nbmax + 1), c, ic - 1 + (jc - 1) * ldc + _c_offset, ldc, work, _work_offset, ldwork);
i += i3;
}
}
work[_work_offset] = lwkopt;
}
private static final int nbmax = 64;
private static final intW refInfo = new intW(0);
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy