math.rng.BetaSpliterator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of math-base Show documentation
Show all versions of math-base Show documentation
Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers
The newest version!
/*
* Copyright 2013, 2021 Stefan Zobel
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.rng;
import java.util.Objects;
import java.util.Spliterator;
import java.util.function.DoubleConsumer;
final class BetaSpliterator extends PseudoRandomSpliterator implements Spliterator.OfDouble {
final double alpha;
final double beta;
final PseudoRandom prng_U;
final PseudoRandom prng_V;
BetaSpliterator(PseudoRandom prng, long index, long fence, double alpha, double beta) {
super(index, fence);
if (alpha <= 0.0) {
throw new IllegalArgumentException("alpha <= 0.0 (" + alpha + ")");
}
if (beta <= 0.0) {
throw new IllegalArgumentException("beta <= 0.0 (" + beta + ")");
}
this.alpha = alpha;
this.beta = beta;
this.prng_U = prng;
if (prng instanceof SplittablePseudoRandom) {
this.prng_V = ((SplittablePseudoRandom) prng).split();
} else {
// this not only requires that 'prng' is an AbstractRng64 but
// also that is has a public constructor taking a seed as a long
this.prng_V = ((AbstractRng64) prng).newInstance();
}
}
private BetaSpliterator(PseudoRandom prng_u, PseudoRandom prng_v, long index, long fence, double alpha,
double beta) {
super(index, fence);
this.alpha = alpha;
this.beta = beta;
this.prng_U = prng_u;
this.prng_V = prng_v;
}
@Override
public Spliterator.OfDouble trySplit() {
long idx = index;
long s = (idx + fence) >>> 1;
if (s <= idx) {
return null;
}
index = s;
return new BetaSpliterator(prng_U, prng_V, idx, s, alpha, beta);
}
@Override
public boolean tryAdvance(DoubleConsumer consumer) {
Objects.requireNonNull(consumer);
long idx = index;
long fence_ = fence;
if (idx < fence_) {
consumer.accept(sample(prng_U, prng_V, alpha, beta));
index = idx + 1;
return true;
} else {
return false;
}
}
@Override
public void forEachRemaining(DoubleConsumer consumer) {
Objects.requireNonNull(consumer);
long idx = index;
long fence_ = fence;
if (idx < fence_) {
index = fence_;
PseudoRandom pru = prng_U;
PseudoRandom prv = prng_V;
double alpha_ = alpha;
double beta_ = beta;
do {
consumer.accept(sample(pru, prv, alpha_, beta_));
} while (++idx < fence_);
}
}
static double sample(PseudoRandom prng_U, PseudoRandom prng_V, double alpha, double beta) {
// This may not be the most efficient solution,
// but it doesn't get any simpler. The problem is
// alpha and beta must not be too small, especially
// a beta < 1 paired with a very large alpha is numerically
// inaccurate. But this seems to be true for all algorithms
// (commons.math appears to be even more inaccurate than this
// simple implementation - not to mention that it is much slower)
//
// An alpha and/or beta of 0.125 (1/8) should be ok, values below are
// not. If you need to have a beta in the range 1/8 <= beta < 1 then
// alpha must not be too large. A ratio of beta : alpha of 1 : 1800
// should be ok (e.g. alpha = 225 for beta = 0.125). Don't go above
// that. If only alpha is small (but not less than code 1/8) there seems
// to exist no practically relevant limit for the magnitude of beta
// (other than the lower bound of 1/8).
double u = GammaSpliterator.sample(prng_U, alpha, 1.0);
return u / (u + GammaSpliterator.sample(prng_V, beta, 1.0));
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy