math.rng.GammaSpliterator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of math-base Show documentation
Show all versions of math-base Show documentation
Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers
The newest version!
/*
* Copyright 2013, 2021 Stefan Zobel
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.rng;
import java.util.Objects;
import java.util.Spliterator;
import java.util.function.DoubleConsumer;
final class GammaSpliterator extends PseudoRandomSpliterator implements Spliterator.OfDouble {
final double shape_k;
final double scale_theta;
final PseudoRandom prng;
GammaSpliterator(PseudoRandom prng, long index, long fence, double k, double theta) {
super(index, fence);
if (k <= 0.0) {
throw new IllegalArgumentException("k <= 0.0 (" + k + ")");
}
if (theta <= 0.0) {
throw new IllegalArgumentException("theta <= 0.0 (" + theta + ")");
}
this.shape_k = k;
this.scale_theta = theta;
this.prng = prng;
}
@Override
public Spliterator.OfDouble trySplit() {
long idx = index;
long s = (idx + fence) >>> 1;
if (s <= idx) {
return null;
}
index = s;
return new GammaSpliterator(prng, idx, s, shape_k, scale_theta);
}
@Override
public boolean tryAdvance(DoubleConsumer consumer) {
Objects.requireNonNull(consumer);
long idx = index;
long fence_ = fence;
if (idx < fence_) {
consumer.accept(sample(prng, shape_k, scale_theta));
index = idx + 1;
return true;
} else {
return false;
}
}
@Override
public void forEachRemaining(DoubleConsumer consumer) {
Objects.requireNonNull(consumer);
long idx = index;
long fence_ = fence;
if (idx < fence_) {
index = fence_;
PseudoRandom pr = prng;
double k = shape_k;
double theta = scale_theta;
do {
consumer.accept(sample(pr, k, theta));
} while (++idx < fence_);
}
}
static double sample(PseudoRandom prng, double shape_k, double scale_theta) {
if (shape_k < 1.0) {
// [1]: p. 228, Algorithm GS
final double bGS = 1.0 + shape_k / Math.E;
while (true) {
// Step 1:
double u = prng.nextDouble();
double p = bGS * u;
if (p <= 1.0) {
// Step 2:
double x = Math.pow(p, 1.0 / shape_k);
double u2 = prng.nextDouble();
if (u2 > Math.exp(-x)) {
// reject
continue;
} else {
return scale_theta * x;
}
} else {
// Step 3:
double x = -1.0 * Math.log((bGS - p) / shape_k);
double u2 = prng.nextDouble();
if (u2 > Math.pow(x, shape_k - 1.0)) {
// reject
continue;
} else {
return scale_theta * x;
}
}
}
}
// shape >= 1
final double d = shape_k - 0.333333333333333333;
final double c = 1.0 / (3.0 * Math.sqrt(d));
while (true) {
double x = prng.nextGaussian();
double cx = 1.0 + c * x;
double v = cx * cx * cx;
if (v <= 0.0) {
continue;
}
double x2 = x * x;
double u = prng.nextDouble();
// squeeze
if (u < 1.0 - 0.0331 * x2 * x2) {
return scale_theta * d * v;
}
if (Math.log(u) < 0.5 * x2 + d * (1.0 - v + Math.log(v))) {
return scale_theta * d * v;
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy