math.rng.LogNormalSpliterator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of math-base Show documentation
Show all versions of math-base Show documentation
Elementary math utilities with a focus on random number generation, non-linear optimization, interpolation and solvers
The newest version!
/*
* Copyright 2013, 2021 Stefan Zobel
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package math.rng;
import java.util.Objects;
import java.util.Spliterator;
import java.util.function.DoubleConsumer;
final class LogNormalSpliterator extends PseudoRandomSpliterator implements Spliterator.OfDouble {
final double mu;
final double sigma;
final PseudoRandom prng;
LogNormalSpliterator(PseudoRandom prng, long index, long fence, double mu, double sigma) {
super(index, fence);
if (sigma <= 0.0) {
throw new IllegalArgumentException("Standard deviation must be positive (" + sigma + ")");
}
this.mu = mu;
this.sigma = sigma;
this.prng = prng;
}
@Override
public Spliterator.OfDouble trySplit() {
long idx = index;
long s = (idx + fence) >>> 1;
if (s <= idx) {
return null;
}
index = s;
return new LogNormalSpliterator(prng, idx, s, mu, sigma);
}
@Override
public boolean tryAdvance(DoubleConsumer consumer) {
Objects.requireNonNull(consumer);
long idx = index;
long fence_ = fence;
if (idx < fence_) {
consumer.accept(sample(prng, mu, sigma));
index = idx + 1;
return true;
} else {
return false;
}
}
@Override
public void forEachRemaining(DoubleConsumer consumer) {
Objects.requireNonNull(consumer);
long idx = index;
long fence_ = fence;
if (idx < fence_) {
index = fence_;
PseudoRandom pr = prng;
double mu_ = mu;
double sigma_ = sigma;
do {
consumer.accept(sample(pr, mu_, sigma_));
} while (++idx < fence_);
}
}
private static double sample(PseudoRandom prng, double mu, double sigma) {
double stdNormal = prng.nextGaussian();
return Math.exp(mu + sigma * stdNormal);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy