java8.lang.Integers Maven / Gradle / Ivy
Show all versions of streamsupport Show documentation
/*
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java8.lang;
/**
* A place for static default implementations of the new Java 8
* static methods in the {@link Integer} class.
*/
public final class Integers {
/**
* Returns a hash code for a {@code int} value; compatible with
* {@code Integer.hashCode()}.
*
* @param value the value to hash
* @return a hash code value for a {@code int} value.
* @since 1.8
*/
public static int hashCode(int value) {
return value;
}
/**
* Converts the argument to a {@code long} by an unsigned
* conversion. In an unsigned conversion to a {@code long}, the
* high-order 32 bits of the {@code long} are zero and the
* low-order 32 bits are equal to the bits of the integer
* argument.
*
* Consequently, zero and positive {@code int} values are mapped
* to a numerically equal {@code long} value and negative {@code
* int} values are mapped to a {@code long} value equal to the
* input plus 232.
*
* @param x the value to convert to an unsigned {@code long}
* @return the argument converted to {@code long} by an unsigned
* conversion
* @since 1.8
*/
public static long toUnsignedLong(int x) {
return ((long) x) & 0xffffffffL;
}
/**
* Returns the unsigned quotient of dividing the first argument by
* the second where each argument and the result is interpreted as
* an unsigned value.
*
* Note that in two's complement arithmetic, the three other
* basic arithmetic operations of add, subtract, and multiply are
* bit-wise identical if the two operands are regarded as both
* being signed or both being unsigned. Therefore separate {@code
* addUnsigned}, etc. methods are not provided.
*
* @param dividend the value to be divided
* @param divisor the value doing the dividing
* @return the unsigned quotient of the first argument divided by
* the second argument
* @see #remainderUnsigned
* @since 1.8
*/
public static int divideUnsigned(int dividend, int divisor) {
// In lieu of tricky code, for now just use long arithmetic.
return (int) (toUnsignedLong(dividend) / toUnsignedLong(divisor));
}
/**
* Returns the unsigned remainder from dividing the first argument
* by the second where each argument and the result is interpreted
* as an unsigned value.
*
* @param dividend the value to be divided
* @param divisor the value doing the dividing
* @return the unsigned remainder of the first argument divided by
* the second argument
* @see #divideUnsigned
* @since 1.8
*/
public static int remainderUnsigned(int dividend, int divisor) {
// In lieu of tricky code, for now just use long arithmetic.
return (int) (toUnsignedLong(dividend) % toUnsignedLong(divisor));
}
/**
* Compares two {@code int} values numerically.
* The value returned is identical to what would be returned by:
*
* Integer.valueOf(x).compareTo(Integer.valueOf(y))
*
*
* @param x the first {@code int} to compare
* @param y the second {@code int} to compare
* @return the value {@code 0} if {@code x == y};
* a value less than {@code 0} if {@code x < y}; and
* a value greater than {@code 0} if {@code x > y}
* @since 1.7
*/
public static int compare(int x, int y) {
return (x < y) ? -1 : ((x == y) ? 0 : 1);
}
/**
* Compares two {@code int} values numerically treating the values
* as unsigned.
*
* @param x the first {@code int} to compare
* @param y the second {@code int} to compare
* @return the value {@code 0} if {@code x == y}; a value less
* than {@code 0} if {@code x < y} as unsigned values; and
* a value greater than {@code 0} if {@code x > y} as
* unsigned values
* @since 1.8
*/
public static int compareUnsigned(int x, int y) {
return compare(x + Integer.MIN_VALUE, y + Integer.MIN_VALUE);
}
/**
* Adds two integers together as per the + operator.
*
* @param a the first operand
* @param b the second operand
* @return the sum of {@code a} and {@code b}
* @see java8.util.function.BinaryOperator
* @since 1.8
*/
public static int sum(int a, int b) {
return a + b;
}
/**
* Returns the greater of two {@code int} values
* as if by calling {@link Math#max(int, int) Math.max}.
*
* @param a the first operand
* @param b the second operand
* @return the greater of {@code a} and {@code b}
* @see java8.util.function.BinaryOperator
* @since 1.8
*/
public static int max(int a, int b) {
return Math.max(a, b);
}
/**
* Returns the smaller of two {@code int} values
* as if by calling {@link Math#min(int, int) Math.min}.
*
* @param a the first operand
* @param b the second operand
* @return the smaller of {@code a} and {@code b}
* @see java8.util.function.BinaryOperator
* @since 1.8
*/
public static int min(int a, int b) {
return Math.min(a, b);
}
private Integers() {
}
}