tech.tablesaw.api.Table Maven / Gradle / Ivy
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package tech.tablesaw.api;
import static java.util.stream.Collectors.toList;
import static tech.tablesaw.aggregate.AggregateFunctions.count;
import static tech.tablesaw.aggregate.AggregateFunctions.countMissing;
import static tech.tablesaw.api.QuerySupport.not;
import static tech.tablesaw.selection.Selection.selectNRowsAtRandom;
import com.google.common.base.Preconditions;
import com.google.common.collect.*;
import com.google.common.primitives.Ints;
import io.github.classgraph.ClassGraph;
import io.github.classgraph.ScanResult;
import it.unimi.dsi.fastutil.ints.*;
import java.util.*;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.IntFunction;
import java.util.function.Predicate;
import java.util.stream.Collectors;
import java.util.stream.Stream;
import org.roaringbitmap.RoaringBitmap;
import tech.tablesaw.aggregate.AggregateFunction;
import tech.tablesaw.aggregate.CrossTab;
import tech.tablesaw.aggregate.PivotTable;
import tech.tablesaw.aggregate.Summarizer;
import tech.tablesaw.columns.Column;
import tech.tablesaw.io.DataFrameReader;
import tech.tablesaw.io.DataFrameWriter;
import tech.tablesaw.io.DataReader;
import tech.tablesaw.io.DataWriter;
import tech.tablesaw.io.ReaderRegistry;
import tech.tablesaw.io.WriterRegistry;
import tech.tablesaw.joining.DataFrameJoiner;
import tech.tablesaw.selection.BitmapBackedSelection;
import tech.tablesaw.selection.Selection;
import tech.tablesaw.sorting.Sort;
import tech.tablesaw.sorting.SortUtils;
import tech.tablesaw.sorting.comparators.IntComparatorChain;
import tech.tablesaw.table.*;
/**
* A table of data, consisting of some number of columns, each of which has the same number of rows.
* All the data in a column has the same type: integer, float, category, etc., but a table may
* contain an arbitrary number of columns of any type.
*
* Tables are the main data-type and primary focus of Tablesaw.
*/
public class Table extends Relation implements Iterable {
public static final ReaderRegistry defaultReaderRegistry = new ReaderRegistry();
public static final WriterRegistry defaultWriterRegistry = new WriterRegistry();
static {
autoRegisterReadersAndWriters();
}
/** The columns that hold the data in this table */
private final List> columnList = new ArrayList<>();
/** The name of the table */
private String name;
// standard column names for melt and cast operations
public static final String MELT_VARIABLE_COLUMN_NAME = "variable";
public static final String MELT_VALUE_COLUMN_NAME = "value";
/** Returns a new table */
private Table() {}
/** Returns a new table initialized with the given name */
private Table(String name) {
this.name = name;
}
/**
* Returns a new Table initialized with the given names and columns
*
* @param name The name of the table
* @param columns One or more columns, all of which must have either the same length or size 0
*/
protected Table(String name, Column>... columns) {
this(name);
for (final Column> column : columns) {
this.addColumns(column);
}
}
/**
* Returns a new Table initialized with the given names and columns
*
* @param name The name of the table
* @param columns One or more columns, all of which must have either the same length or size 0
*/
protected Table(String name, Collection> columns) {
this(name);
for (final Column> column : columns) {
this.addColumns(column);
}
}
/** TODO: Add documentation */
private static void autoRegisterReadersAndWriters() {
try (ScanResult scanResult =
new ClassGraph().enableAllInfo().whitelistPackages("tech.tablesaw.io").scan()) {
List classes = new ArrayList<>();
classes.addAll(scanResult.getClassesImplementing(DataWriter.class.getName()).getNames());
classes.addAll(scanResult.getClassesImplementing(DataReader.class.getName()).getNames());
for (String clazz : classes) {
try {
Class.forName(clazz);
} catch (ClassNotFoundException e) {
throw new IllegalStateException(e);
}
}
}
}
/** Returns a new, empty table (without rows or columns) */
public static Table create() {
return new Table();
}
/** Returns a new, empty table (without rows or columns) with the given name */
public static Table create(String tableName) {
return new Table(tableName);
}
/**
* Returns a new table with the given columns
*
* @param columns one or more columns, all of the same @code{column.size()}
*/
public static Table create(Column>... columns) {
return new Table(null, columns);
}
/**
* Returns a new table with the given columns
*
* @param columns one or more columns, all of the same @code{column.size()}
*/
public static Table create(Collection> columns) {
return new Table(null, columns);
}
/**
* Returns a new table with the given columns
*
* @param columns one or more columns, all of the same @code{column.size()}
*/
public static Table create(Stream> columns) {
return new Table(null, columns.collect(Collectors.toList()));
}
/**
* Returns a new table with the given columns and given name
*
* @param name the name for this table
* @param columns one or more columns, all of the same @code{column.size()}
*/
public static Table create(String name, Column>... columns) {
return new Table(name, columns);
}
/**
* Returns a new table with the given columns and given name
*
* @param name the name for this table
* @param columns one or more columns, all of the same @code{column.size()}
*/
public static Table create(String name, Collection> columns) {
return new Table(name, columns);
}
/**
* Returns a new table with the given columns and given name
*
* @param name the name for this table
* @param columns one or more columns, all of the same @code{column.size()}
*/
public static Table create(String name, Stream> columns) {
return new Table(name, columns.collect(Collectors.toList()));
}
/**
* Returns a sort Key that can be used for simple or chained comparator sorting
*
* You can extend the sort key by using .next() to fill more columns to the sort order
*/
private static Sort first(String columnName, Sort.Order order) {
return Sort.on(columnName, order);
}
/**
* Returns an object that can be used to sort this table in the order specified for by the given
* column names
*/
private static Sort getSort(String... columnNames) {
Sort key = null;
for (String s : columnNames) {
if (key == null) {
key = first(s, Sort.Order.DESCEND);
} else {
key.next(s, Sort.Order.DESCEND);
}
}
return key;
}
/** Returns an object that an be used to read data from a file into a new Table */
public static DataFrameReader read() {
return new DataFrameReader(defaultReaderRegistry);
}
/**
* Returns an object that an be used to write data from a Table into a file. If the file exists,
* it is over-written
*/
public DataFrameWriter write() {
return new DataFrameWriter(defaultWriterRegistry, this);
}
/**
* Adds the given column to this table. Column must either be empty or have size() == the
* rowCount() of the table they're being added to. Column names in the table must remain unique.
*/
@Override
public Table addColumns(final Column>... cols) {
for (final Column> c : cols) {
validateColumn(c);
columnList.add(c);
}
return this;
}
/**
* For internal Tablesaw use only
*
*
Adds the given column to this table without performing duplicate-name or column size checks
*/
public void internalAddWithoutValidation(final Column> c) {
columnList.add(c);
}
/**
* Throws an IllegalArgumentException if a column with the given name is already in the table, or
* if the number of rows in the column does not match the number of rows in the table. Regarding
* the latter rule, however, if the column is completely empty (size == 0), then it is filled with
* missing values to match the rowSize() as a convenience.
*/
private void validateColumn(final Column> newColumn) {
Preconditions.checkNotNull(
newColumn, "Attempted to add a null to the columns in table " + name);
List stringList = new ArrayList<>();
for (String name : columnNames()) {
stringList.add(name.toLowerCase());
}
if (stringList.contains(newColumn.name().toLowerCase())) {
String message =
String.format(
"Cannot add column with duplicate name %s to table %s", newColumn.name(), name);
throw new IllegalArgumentException(message);
}
checkColumnSize(newColumn);
}
/**
* Throws an IllegalArgumentException if the column size doesn't match the rowCount() for the
* table. Columns that are completely empty, however, are initialized to match rowcount by filling
* with missing values
*/
private void checkColumnSize(Column> newColumn) {
if (columnCount() != 0) {
if (!isEmpty()) {
if (newColumn.isEmpty()) {
while (newColumn.size() < rowCount()) {
newColumn.appendMissing();
}
}
}
Preconditions.checkArgument(
newColumn.size() == rowCount(),
"Column "
+ newColumn.name()
+ " does not have the same number of rows as the other columns in the table.");
}
}
/**
* Adds the given column to this table at the given position in the column list. Columns must
* either be empty or have size() == the rowCount() of the table they're being added to. Column
* names in the table must remain unique.
*
* @param index Zero-based index into the column list
* @param column Column to be added
*/
public Table insertColumn(int index, Column> column) {
validateColumn(column);
columnList.add(index, column);
return this;
}
/**
* Return a new table (shallow copy) that contains all the columns in this table, in the order
* given in the argument. Throw an IllegalArgument exception if the number of names given does not
* match the number of columns in this table. NOTE: This does not make a copy of the columns, so
* they are shared between the two tables.
*
* @param columnNames a column name or array of names
*/
public Table reorderColumns(String... columnNames) {
Preconditions.checkArgument(columnNames.length == columnCount());
Table table = Table.create(name);
for (String name : columnNames) {
table.addColumns(column(name));
}
return table;
}
/**
* Replaces an existing column (by index) in this table with the given new column
*
* @param colIndex Zero-based index of the column to be replaced
* @param newColumn Column to be added
*/
public Table replaceColumn(final int colIndex, final Column> newColumn) {
removeColumns(column(colIndex));
return insertColumn(colIndex, newColumn);
}
/**
* Replaces an existing column (by name) in this table with the given new column
*
* @param columnName String name of the column to be replaced
* @param newColumn Column to be added
*/
public Table replaceColumn(final String columnName, final Column> newColumn) {
int colIndex = columnIndex(columnName);
return replaceColumn(colIndex, newColumn);
}
/**
* Replaces an existing column having the same name of the given column with the given column
*
* @param newColumn Column to be added
*/
public Table replaceColumn(Column> newColumn) {
return replaceColumn(newColumn.name(), newColumn);
}
/** Sets the name of the table */
@Override
public Table setName(String name) {
this.name = name;
return this;
}
/**
* Returns the column at the given index in the column list
*
* @param columnIndex an integer at least 0 and less than number of columns in the table
*/
@Override
public Column> column(int columnIndex) {
return columnList.get(columnIndex);
}
/** Returns the number of columns in the table */
@Override
public int columnCount() {
return columnList.size();
}
/** Returns the number of rows in the table */
@Override
public int rowCount() {
int result = 0;
if (!columnList.isEmpty()) {
// all the columns have the same number of elements, so we can check any of them
result = columnList.get(0).size();
}
return result;
}
/** Returns the list of columns */
@Override
public List> columns() {
return columnList;
}
/** Returns the columns in this table as an array */
public Column>[] columnArray() {
return columnList.toArray(new Column>[columnCount()]);
}
/** Returns only the columns whose names are given in the input array */
@Override
public List> categoricalColumns(String... columnNames) {
List> columns = new ArrayList<>();
for (String columnName : columnNames) {
columns.add(categoricalColumn(columnName));
}
return columns;
}
/**
* Returns the index of the column with the given name
*
* @throws IllegalArgumentException if the input string is not the name of any column in the table
*/
@Override
public int columnIndex(String columnName) {
int columnIndex = -1;
for (int i = 0; i < columnList.size(); i++) {
if (columnList.get(i).name().equalsIgnoreCase(columnName)) {
columnIndex = i;
break;
}
}
if (columnIndex == -1) {
throw new IllegalArgumentException(
String.format("Column %s is not present in table %s", columnName, name));
}
return columnIndex;
}
/**
* Returns the index of the given column (its position in the list of columns)
*
* @throws IllegalArgumentException if the column is not present in this table
*/
public int columnIndex(Column> column) {
int columnIndex = -1;
for (int i = 0; i < columnList.size(); i++) {
if (columnList.get(i).equals(column)) {
columnIndex = i;
break;
}
}
if (columnIndex == -1) {
throw new IllegalArgumentException(
String.format("Column %s is not present in table %s", column.name(), name));
}
return columnIndex;
}
/** Returns the name of the table */
@Override
public String name() {
return name;
}
/** Returns a List of the names of all the columns in this table */
public List columnNames() {
return columnList.stream().map(Column::name).collect(toList());
}
/** Returns a table with the same columns and data as this table */
public Table copy() {
return inRange(0, this.rowCount());
}
/** Returns a table with the same columns as this table, but no data */
public Table emptyCopy() {
Table copy = new Table(name);
for (Column> column : columnList) {
copy.addColumns(column.emptyCopy());
}
return copy;
}
/**
* Returns a table with the same columns as this table, but no data, initialized to the given row
* size
*/
public Table emptyCopy(int rowSize) {
Table copy = new Table(name);
for (Column> column : columnList) {
copy.addColumns(column.emptyCopy(rowSize));
}
return copy;
}
/**
* Copies the rows specified by Selection into newTable
*
* @param rows A Selection defining the rows to copy
* @param newTable The table to copy the rows into
*/
@SuppressWarnings({"rawtypes", "unchecked"})
public void copyRowsToTable(Selection rows, Table newTable) {
for (int columnIndex = 0; columnIndex < this.columnCount(); columnIndex++) {
Column oldColumn = this.column(columnIndex);
int r = 0;
for (int i : rows) {
newTable.column(columnIndex).set(r, oldColumn, i);
r++;
}
}
}
/**
* Copies the rows indicated by the row index values in the given array from oldTable to newTable
*/
@SuppressWarnings({"rawtypes", "unchecked"})
public void copyRowsToTable(int[] rows, Table newTable) {
for (int columnIndex = 0; columnIndex < columnCount(); columnIndex++) {
Column oldColumn = column(columnIndex);
int r = 0;
for (int i : rows) {
newTable.column(columnIndex).set(r, oldColumn, i);
r++;
}
}
}
/**
* Returns {@code true} if the row {@code rowNumber} in {@code table1} holds the same values than the row at
* {@code rowNumber} in {@code table2}. Returns false if the number of columns is different in the two tables.
* @param rowNumber the row to compare
* @param table1 the first table to compare
* @param table2 the second table to compare
* @return false if row {@code rowNumber} is different in {@code table1} and {@code table2}
* @throws {@code IndexOutOfBoundsException} if {@code rownumber} exceeds either table number of rows
*/
public static boolean compareRows(int rowNumber, Table table1, Table table2) {
final int columnCount = table1.columnCount();
if (columnCount != table2.columnCount()) return false;
for (int columnIndex = 0; columnIndex < columnCount; columnIndex++) {
ColumnType columnType = table1.column(columnIndex).type();
if (!columnType.compare(rowNumber, table2.column(columnIndex), table1.column(columnIndex))) {
return false;
}
}
return true;
}
/**
* Returns true if every value in row1 is equal to the same value in row2, where row1 and row2 are
* both rows from this table
*/
private boolean duplicateRows(Row row1, Row row2) {
if (row1.columnCount() != row2.columnCount()) {
return false;
}
boolean result;
for (int columnIndex = 0; columnIndex < row1.columnCount(); columnIndex++) {
Column> c = column(columnIndex);
result = c.equals(row1.getRowNumber(), row2.getRowNumber());
if (!result) {
return false;
}
}
return true;
}
public Table[] sampleSplit(double table1Proportion) {
Table[] tables = new Table[2];
int table1Count = (int) Math.round(rowCount() * table1Proportion);
Selection table2Selection = new BitmapBackedSelection();
for (int i = 0; i < rowCount(); i++) {
table2Selection.add(i);
}
Selection table1Selection = new BitmapBackedSelection();
Selection table1Records = selectNRowsAtRandom(table1Count, rowCount());
for (int table1Record : table1Records) {
table1Selection.add(table1Record);
}
table2Selection.andNot(table1Selection);
tables[0] = where(table1Selection);
tables[1] = where(table2Selection);
return tables;
}
/**
* Splits the table into two stratified samples, this uses the specified column to divide the
* table into groups, randomly assigning records to each according to the proportion given in
* trainingProportion.
*
* @param column the column to be used for the stratified sampling
* @param table1Proportion The proportion to go in the first table
* @return An array two tables, with the first table having the proportion specified in the method
* parameter, and the second table having the balance of the rows
*/
public Table[] stratifiedSampleSplit(CategoricalColumn> column, double table1Proportion) {
Preconditions.checkArgument(
containsColumn(column),
"The categorical column must be part of the table, you can create a string column and add it to this table before sampling.");
final Table first = emptyCopy();
final Table second = emptyCopy();
splitOn(column)
.asTableList()
.forEach(
tab -> {
Table[] splits = tab.sampleSplit(table1Proportion);
first.append(splits[0]);
second.append(splits[1]);
});
return new Table[] {first, second};
}
/**
* Returns a table consisting of randomly selected records from this table. The sample size is
* based on the given proportion
*
* @param proportion The proportion to go in the sample
*/
public Table sampleX(double proportion) {
Preconditions.checkArgument(
proportion <= 1 && proportion >= 0, "The sample proportion must be between 0 and 1");
int tableSize = (int) Math.round(rowCount() * proportion);
return where(selectNRowsAtRandom(tableSize, rowCount()));
}
/**
* Returns a table consisting of randomly selected records from this table
*
* @param nRows The number of rows to go in the sample
*/
public Table sampleN(int nRows) {
Preconditions.checkArgument(
nRows > 0 && nRows < rowCount(),
"The number of rows sampled must be greater than 0 and less than the number of rows in the table.");
return where(selectNRowsAtRandom(nRows, rowCount()));
}
/** Clears all the data from this table */
@Override
public void clear() {
columnList.forEach(Column::clear);
}
/** Returns a new table containing the first {@code nrows} of data in this table */
public Table first(int nRows) {
int newRowCount = Math.min(nRows, rowCount());
return inRange(0, newRowCount);
}
/** Returns a new table containing the last {@code nrows} of data in this table */
public Table last(int nRows) {
int newRowCount = Math.min(nRows, rowCount());
return inRange(rowCount() - newRowCount, rowCount());
}
/**
* Sorts this table into a new table on the columns indexed
*
* if index is negative then sort that column in descending order otherwise sort ascending
*/
public Table sortOn(int... columnIndexes) {
List names = new ArrayList<>();
for (int i : columnIndexes) {
if (i >= 0) {
names.add(columnList.get(i).name());
} else {
names.add("-" + columnList.get(-i).name());
}
}
return sortOn(names.toArray(new String[names.size()]));
}
/**
* Returns a copy of this table sorted on the given column names, applied in order,
*
* if column name starts with - then sort that column descending otherwise sort ascending
*/
public Table sortOn(String... columnNames) {
return this.sortOn(Sort.create(this, columnNames));
}
/**
* Returns a copy of this table sorted in the order of the given column names, in ascending order
*/
public Table sortAscendingOn(String... columnNames) {
return this.sortOn(columnNames);
}
/**
* Returns a copy of this table sorted on the given column names, applied in order, descending
* TODO: Provide equivalent methods naming columns by index
*/
public Table sortDescendingOn(String... columnNames) {
Sort key = getSort(columnNames);
return sortOn(key);
}
/**
* Returns a copy of this table sorted using the given sort key.
*
* @param key to sort on.
* @return a sorted copy of this table.
*/
public Table sortOn(Sort key) {
Preconditions.checkArgument(!key.isEmpty());
if (key.size() == 1) {
IntComparator comparator = SortUtils.getComparator(this, key);
return parallelSortOn(comparator);
}
IntComparatorChain chain = SortUtils.getChain(this, key);
return parallelSortOn(chain);
}
/**
* Returns a copy of this table sorted using the given comparator. This method sorts in a single
* thread, as is required for using Comparator
*/
private Table sortOn(IntComparator rowComparator) {
Table newTable = emptyCopy(rowCount());
int[] newRows = rows();
IntArrays.mergeSort(newRows, rowComparator);
copyRowsToTable(newRows, newTable);
return newTable;
}
/** Returns a copy of this table sorted in parallel using the given comparator */
private Table parallelSortOn(IntComparator rowComparator) {
Table newTable = emptyCopy(rowCount());
int[] newRows = rows();
IntArrays.parallelQuickSort(newRows, rowComparator);
copyRowsToTable(newRows, newTable);
return newTable;
}
/** Returns a copy of this table sorted using the given comparator */
public Table sortOn(Comparator rowComparator) {
Row row1 = new Row(this);
Row row2 = new Row(this);
return sortOn( // Note: Never user parallel sort here as Row isn't remotely thread-safe
(IntComparator)
(k1, k2) -> {
row1.at(k1);
row2.at(k2);
return rowComparator.compare(row1, row2);
});
}
/** Returns an array of ints of the same number of rows as the table */
private int[] rows() {
int[] rowIndexes = new int[rowCount()];
for (int i = 0; i < rowCount(); i++) {
rowIndexes[i] = i;
}
return rowIndexes;
}
/**
* Adds a single row to this table from sourceTable, copying every column in sourceTable
*
* @param rowIndex The row in sourceTable to add to this table
* @param sourceTable A table with the same column structure as this table
*/
public void addRow(int rowIndex, Table sourceTable) {
for (int i = 0; i < columnCount(); i++) {
column(i).appendObj(sourceTable.column(i).get(rowIndex));
}
}
/**
* Adds the given row to this table
*
* @deprecated Use {@link #append(Row)} instead.
*/
@Deprecated
public void addRow(Row row) {
for (int i = 0; i < row.columnCount(); i++) {
column(i).appendObj(row.getObject(i));
}
}
/** Returns a new Row object with its position set to the given zero-based row index. */
public Row row(int rowIndex) {
Row row = new Row(Table.this);
row.at(rowIndex);
return row;
}
/** Returns a table containing the rows contained in the given array of row indices */
public Table rows(int... rowNumbers) {
Preconditions.checkArgument(Ints.max(rowNumbers) <= rowCount());
return where(Selection.with(rowNumbers));
}
/** Returns a table EXCLUDING the rows contained in the given array of row indices */
public Table dropRows(int... rowNumbers) {
Preconditions.checkArgument(Ints.max(rowNumbers) <= rowCount());
Selection selection = Selection.withRange(0, rowCount()).andNot(Selection.with(rowNumbers));
return where(selection);
}
/**
* Returns a new table containing the first rowCount rows if rowCount positive. Returns the last
* rowCount rows if rowCount negative.
*/
public Table inRange(int rowCount) {
Preconditions.checkArgument(rowCount <= rowCount());
int rowStart = rowCount >= 0 ? 0 : rowCount() + rowCount;
int rowEnd = rowCount >= 0 ? rowCount : rowCount();
return where(Selection.withRange(rowStart, rowEnd));
}
/**
* Returns a new table containing the rows contained in the range from rowStart inclusive to
* rowEnd exclusive
*/
public Table inRange(int rowStart, int rowEnd) {
Preconditions.checkArgument(rowEnd <= rowCount());
return where(Selection.withRange(rowStart, rowEnd));
}
/**
* Returns a new table EXCLUDING the first rowCount rows if rowCount positive. Drops the last
* rowCount rows if rowCount negative.
*/
public Table dropRange(int rowCount) {
Preconditions.checkArgument(rowCount <= rowCount());
int rowStart = rowCount >= 0 ? rowCount : 0;
int rowEnd = rowCount >= 0 ? rowCount() : rowCount() + rowCount;
return where(Selection.withRange(rowStart, rowEnd));
}
/**
* Returns a table EXCLUDING the rows contained in the range from rowStart inclusive to rowEnd
* exclusive
*/
public Table dropRange(int rowStart, int rowEnd) {
Preconditions.checkArgument(rowEnd <= rowCount());
return where(Selection.withoutRange(0, rowCount(), rowStart, rowEnd));
}
/** Returns a table containing the rows contained in the given Selection */
public Table where(Selection selection) {
Table newTable = this.emptyCopy(selection.size());
copyRowsToTable(selection, newTable);
return newTable;
}
/** Returns a new Table made by applying the given function to this table */
public Table where(Function selection) {
return where(selection.apply(this));
}
/**
* Returns a new Table made by EXCLUDING any rows returned when the given function is applied to
* this table
*/
public Table dropWhere(Function selection) {
return where(not(selection));
}
/** Returns a table EXCLUDING the rows contained in the given Selection */
public Table dropWhere(Selection selection) {
Selection opposite = new BitmapBackedSelection();
opposite.addRange(0, rowCount());
opposite.andNot(selection);
Table newTable = this.emptyCopy(opposite.size());
copyRowsToTable(opposite, newTable);
return newTable;
}
/**
* Returns a pivot on this table, where: The first column contains unique values from the index
* column1 There are n additional columns, one for each unique value in column2 The values in each
* of the cells in these new columns are the result of applying the given AggregateFunction to the
* data in column3, grouped by the values of column1 and column2
*/
public Table pivot(
CategoricalColumn> column1,
CategoricalColumn> column2,
NumericColumn> column3,
AggregateFunction, ?> aggregateFunction) {
return PivotTable.pivot(this, column1, column2, column3, aggregateFunction);
}
/**
* Returns a pivot on this table, where: The first column contains unique values from the index
* column1 There are n additional columns, one for each unique value in column2 The values in each
* of the cells in these new columns are the result of applying the given AggregateFunction to the
* data in column3, grouped by the values of column1 and column2
*/
public Table pivot(
String column1Name,
String column2Name,
String column3Name,
AggregateFunction, ?> aggregateFunction) {
return pivot(
categoricalColumn(column1Name),
categoricalColumn(column2Name),
numberColumn(column3Name),
aggregateFunction);
}
/**
* Returns a non-overlapping and exhaustive collection of "slices" over this table. Each slice is
* like a virtual table containing a subset of the records in this table
*
* This method is intended for advanced or unusual operations on the subtables. If you want to
* calculate summary statistics for each subtable, the summarize methods (e.g)
*
*
table.summarize(myColumn, mean, median).by(columns)
*
*
are preferred
*/
public TableSliceGroup splitOn(String... columns) {
return splitOn(categoricalColumns(columns).toArray(new CategoricalColumn>[columns.length]));
}
/**
* Returns a non-overlapping and exhaustive collection of "slices" over this table. Each slice is
* like a virtual table containing a subset of the records in this table
*
*
This method is intended for advanced or unusual operations on the subtables. If you want to
* calculate summary statistics for each subtable, the summarize methods (e.g)
*
*
table.summarize(myColumn, mean, median).by(columns)
*
*
are preferred
*/
public TableSliceGroup splitOn(CategoricalColumn>... columns) {
return StandardTableSliceGroup.create(this, columns);
}
/**
* Returns the unique records in this table, such that any record that appears more than once in
* this table, appears only once in the returned table.
*/
public Table dropDuplicateRows() {
Table temp = emptyCopy();
Int2ObjectMap uniqueHashes = new Int2ObjectOpenHashMap<>();
// ListMultimap uniqueHashes = ArrayListMultimap.create();
for (Row row : this) {
if (!isDuplicate(row, uniqueHashes)) {
temp.append(row);
}
}
return temp;
}
/**
* Returns true if all the values in row are identical to those in another row previously seen and
* recorded in the list.
*
* @param row the row to evaluate
* @param uniqueHashes a map of row hashes to the id of an exemplar row that produces that hash.
* If two different rows produce the same hash, then the row number for each is placed in the
* list, so that there are exemplars for both
* @return true if the row's values exactly match a row that was previously seen
*/
private boolean isDuplicate(Row row, Int2ObjectMap uniqueHashes) {
int hash = row.rowHash();
if (!uniqueHashes.containsKey(hash)) {
IntArrayList rowNumbers = new IntArrayList();
rowNumbers.add(row.getRowNumber());
uniqueHashes.put(hash, rowNumbers);
return false;
}
// the hashmap contains the hash, make sure the actual row values match
IntArrayList matchingKeys = uniqueHashes.get(hash);
for (int key : matchingKeys) {
Row oldRow = this.row(key);
if (duplicateRows(row, oldRow)) {
return true;
}
}
uniqueHashes.get(hash).add(row.getRowNumber());
return false;
}
/** Returns only those records in this table that have no columns with missing values */
public Table dropRowsWithMissingValues() {
Selection missing = new BitmapBackedSelection();
for (int row = 0; row < rowCount(); row++) {
for (int col = 0; col < columnCount(); col++) {
Column> c = column(col);
if (c.isMissing(row)) {
missing.add(row);
break;
}
}
}
Selection notMissing = Selection.withRange(0, rowCount());
notMissing.andNot(missing);
Table temp = emptyCopy(notMissing.size());
copyRowsToTable(notMissing, temp);
return temp;
}
/**
* Returns a new table containing copies of the selected columns from this table
*
* @param columns The columns to copy into the new table
* @see #retainColumns(Column[])
*/
public Table selectColumns(Column>... columns) {
Table t = Table.create(this.name);
for (Column> c : columns) {
t.addColumns(c.copy());
}
return t;
}
/**
* Returns a new table containing copies of the selected columns from this table
*
* @param columns The columns to copy into the new table
* @see #retainColumns(Column[])
* @deprecated Use {@link #selectColumns(Column[])} instead
*/
public Table select(Column>... columns) {
return selectColumns(columns);
}
/**
* Returns a new table containing copies of the selected columns from this table
*
* @param columnNames The names of the columns to include
* @see #retainColumns(String[])
*/
public Table selectColumns(String... columnNames) {
Table t = Table.create(this.name);
for (String s : columnNames) {
t.addColumns(column(s).copy());
}
return t;
}
/**
* Returns a new table containing copies of the selected columns from this table
*
* @param columnNames The names of the columns to include
* @see #retainColumns(String[])
* @deprecated Use {@link #selectColumns(String[])} instead
*/
public Table select(String... columnNames) {
return selectColumns(columnNames);
}
/**
* Returns a new table containing copies of all the columns from this table, except those at the
* given indexes
*
* @param columnIndexes The indexes of the columns to exclude
* @see #removeColumns(int[])
*/
public Table rejectColumns(int... columnIndexes) {
Table t = Table.create(this.name);
RoaringBitmap bm = new RoaringBitmap();
bm.add((long) 0, columnCount());
RoaringBitmap excluded = new RoaringBitmap();
excluded.add(columnIndexes);
bm.andNot(excluded);
for (int i : bm) {
t.addColumns(column(i).copy());
}
return t;
}
/**
* Returns a new table containing copies of all the columns from this table, except those named in
* the argument
*
* @param columnNames The names of the columns to exclude
* @see #removeColumns(int[])
*/
public Table rejectColumns(String... columnNames) {
IntArrayList indices = new IntArrayList();
for (String s : columnNames) {
indices.add(columnIndex(s));
}
return rejectColumns(indices.toIntArray());
}
/**
* Returns a new table containing copies of all the columns from this table, except those named in
* the argument
*
* @param columns The names of the columns to exclude
* @see #removeColumns(int[])
*/
public Table rejectColumns(Column>... columns) {
IntArrayList indices = new IntArrayList();
for (Column> c : columns) {
indices.add(columnIndex(c));
}
return rejectColumns(indices.toIntArray());
}
/**
* Returns a new table containing copies of the columns at the given indexes
*
* @param columnIndexes The indexes of the columns to include
* @see #retainColumns(int[])
*/
public Table selectColumns(int... columnIndexes) {
Table t = Table.create(this.name);
RoaringBitmap bm = new RoaringBitmap();
bm.add(columnIndexes);
for (int i : bm) {
t.addColumns(column(i).copy());
}
return t;
}
/** Removes the given columns from this table and returns this table */
@Override
public Table removeColumns(Column>... columns) {
columnList.removeAll(Arrays.asList(columns));
return this;
}
/** Removes all columns with missing values from this table, and returns this table. */
public Table removeColumnsWithMissingValues() {
removeColumns(columnList.stream().filter(x -> x.countMissing() > 0).toArray(Column>[]::new));
return this;
}
/**
* Removes all columns except for those given in the argument from this table and returns this
* table
*/
public Table retainColumns(Column>... columns) {
List> retained = Arrays.asList(columns);
columnList.clear();
columnList.addAll(retained);
return this;
}
/**
* Removes all columns except for those given in the argument from this table and returns this
* table
*/
public Table retainColumns(int... columnIndexes) {
List> retained = columns(columnIndexes);
columnList.clear();
columnList.addAll(retained);
return this;
}
/**
* Removes all columns except for those given in the argument from this table and returns this
* table
*/
public Table retainColumns(String... columnNames) {
List> retained = columns(columnNames);
columnList.clear();
columnList.addAll(retained);
return this;
}
/** Returns this table after adding the data from the argument */
@SuppressWarnings({"rawtypes", "unchecked"})
public Table append(Relation tableToAppend) {
for (final Column column : columnList) {
final Column columnToAppend = tableToAppend.column(column.name());
column.append(columnToAppend);
}
return this;
}
/**
* Appends the given row to this table and returns the table.
*
* Note: The table is modified in-place TODO: Performance
*/
public Table append(Row row) {
for (int i = 0; i < row.columnCount(); i++) {
column(i).appendObj(row.getObject(i));
}
return this;
}
/** Removes the columns with the given names from this table and returns this table */
@Override
public Table removeColumns(String... columns) {
return (Table) super.removeColumns(columns);
}
/** Removes the columns at the given indices from this table and returns this table */
@Override
public Table removeColumns(int... columnIndexes) {
return (Table) super.removeColumns(columnIndexes);
}
/**
* Appends an empty row and returns a Row object indexed to the newly added row so values can be
* set.
*
*
Intended usage:
*
*
for (int i = 0; ...) { Row row = table.appendRow(); row.setString("name", "Bob");
* row.setFloat("IQ", 123.4f); ...etc. }
*/
public Row appendRow() {
for (final Column> column : columnList) {
column.appendMissing();
}
return row(rowCount() - 1);
}
/**
* Add all the columns of tableToConcatenate to this table Note: The columns in the result must
* have unique names, when compared case insensitive Note: Both tables must have the same number
* of rows
*
* @param tableToConcatenate The table containing the columns to be added
* @return This table
*/
public Table concat(Table tableToConcatenate) {
Preconditions.checkArgument(
tableToConcatenate.rowCount() == this.rowCount(),
"Both tables must have the same number of rows to concatenate them.");
for (Column> column : tableToConcatenate.columns()) {
this.addColumns(column);
}
return this;
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(String columName, AggregateFunction, ?>... functions) {
return summarize(column(columName), functions);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(List columnNames, AggregateFunction, ?>... functions) {
return new Summarizer(this, columnNames, functions);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
* Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(
String numericColumn1Name, String numericColumn2Name, AggregateFunction, ?>... functions) {
return summarize(column(numericColumn1Name), column(numericColumn2Name), functions);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(
String col1Name, String col2Name, String col3Name, AggregateFunction, ?>... functions) {
return summarize(column(col1Name), column(col2Name), column(col3Name), functions);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(
String col1Name,
String col2Name,
String col3Name,
String col4Name,
AggregateFunction, ?>... functions) {
return summarize(
column(col1Name), column(col2Name), column(col3Name), column(col4Name), functions);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(Column> numberColumn, AggregateFunction, ?>... function) {
return new Summarizer(this, numberColumn, function);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(
Column> column1, Column> column2, AggregateFunction, ?>... function) {
return new Summarizer(this, column1, column2, function);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(
Column> column1,
Column> column2,
Column> column3,
AggregateFunction, ?>... function) {
return new Summarizer(this, column1, column2, column3, function);
}
/**
* Returns a {@link Summarizer} that can be used to summarize the column with the given name(s)
* using the given functions. This object implements reduce/aggregation operations on a table.
*
*
Summarizer can return the results as a table using the Summarizer:apply() method. Summarizer
* can compute sub-totals using the Summarizer:by() method.
*/
public Summarizer summarize(
Column> column1,
Column> column2,
Column> column3,
Column> column4,
AggregateFunction, ?>... function) {
return new Summarizer(this, column1, column2, column3, column4, function);
}
/**
* Returns a table with n by m + 1 cells. The first column contains labels, the other cells
* contains the counts for every unique combination of values from the two specified columns in
* this table.
*/
public Table xTabCounts(String column1Name, String column2Name) {
return CrossTab.counts(this, categoricalColumn(column1Name), categoricalColumn(column2Name));
}
/**
* Returns a table with n by m + 1 cells. The first column contains labels, the other cells
* contains the row percents for every unique combination of values from the two specified columns
* in this table. Row percents total to 100% in every row.
*/
public Table xTabRowPercents(String column1Name, String column2Name) {
return CrossTab.rowPercents(this, column1Name, column2Name);
}
/**
* Returns a table with n by m + 1 cells. The first column contains labels, the other cells
* contains the column percents for every unique combination of values from the two specified
* columns in this table. Column percents total to 100% in every column.
*/
public Table xTabColumnPercents(String column1Name, String column2Name) {
return CrossTab.columnPercents(this, column1Name, column2Name);
}
/**
* Returns a table with n by m + 1 cells. The first column contains labels, the other cells
* contains the proportion for a unique combination of values from the two specified columns in
* this table
*/
public Table xTabTablePercents(String column1Name, String column2Name) {
return CrossTab.tablePercents(this, column1Name, column2Name);
}
/**
* TODO: Rename the method to xTabProportions, deprecating this version Returns a table with two
* columns, the first contains a value each unique value in the argument, and the second contains
* the proportion of observations having that value
*/
public Table xTabPercents(String column1Name) {
return CrossTab.percents(this, column1Name);
}
/**
* Returns a table with two columns, the first contains a value each unique value in the argument,
* and the second contains the number of observations of each value
*/
public Table xTabCounts(String column1Name) {
return CrossTab.counts(this, column1Name);
}
/**
* Returns a table containing two columns, the grouping column, and a column named "Count" that
* contains the counts for each grouping column value
*/
public Table countBy(CategoricalColumn>... groupingColumns) {
String[] names = new String[groupingColumns.length];
for (int i = 0; i < groupingColumns.length; i++) {
names[i] = groupingColumns[i].name();
}
return countBy(names);
}
/**
* Returns a table containing a column for each grouping column, and a column named "Count" that
* contains the counts for each combination of grouping column values
*
* @param categoricalColumnNames The name(s) of one or more CategoricalColumns in this table
* @return A table containing counts of rows grouped by the categorical columns
* @throws ClassCastException if the categoricalColumnName parameter is the name of a column that
* does not * implement categorical
*/
public Table countBy(String... categoricalColumnNames) {
Table t = summarize(column(0).name(), count).by(categoricalColumnNames);
t.column(t.columnCount() - 1).setName("Count");
t.replaceColumn("Count", (t.doubleColumn("Count").asIntColumn()));
return t;
}
/**
* Returns a new DataFrameJoiner initialized with multiple {@code columnNames}
*
* @param columnNames Name of the columns to join on.
* @return The new DataFrameJoiner
*/
public DataFrameJoiner joinOn(String... columnNames) {
return new DataFrameJoiner(this, columnNames);
}
/** Returns a table containing the number of missing values in each column in this table */
public Table missingValueCounts() {
return summarize(columnNames(), countMissing).apply();
}
@Override
public Iterator iterator() {
return new Iterator() {
private final Row row = new Row(Table.this);
@Override
public Row next() {
return row.next();
}
@Override
public boolean hasNext() {
return row.hasNext();
}
};
}
/**
* Iterates over rolling sets of rows. I.e. 0 to n-1, 1 to n, 2 to n+1, etc.
*
* @param n the number of rows to return for each iteration
*/
public Iterator rollingIterator(int n) {
return new Iterator() {
private int currRow = 0;
@Override
public Row[] next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
Row[] rows = new Row[n];
for (int i = 0; i < n; i++) {
rows[i] = new Row(Table.this, currRow + i);
}
currRow++;
return rows;
}
@Override
public boolean hasNext() {
return currRow + n <= rowCount();
}
};
}
/**
* Streams over stepped sets of rows. I.e. 0 to n-1, n to 2n-1, 2n to 3n-1, etc. Only returns full
* sets of rows.
*
* @param n the number of rows to return for each iteration
*/
public Iterator steppingIterator(int n) {
return new Iterator() {
private int currRow = 0;
@Override
public Row[] next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
Row[] rows = new Row[n];
for (int i = 0; i < n; i++) {
rows[i] = new Row(Table.this, currRow + i);
}
currRow += n;
return rows;
}
@Override
public boolean hasNext() {
return currRow + n <= rowCount();
}
};
}
/** Returns the rows in this table as a Stream */
public Stream stream() {
return Streams.stream(iterator());
}
/**
* Streams over stepped sets of rows. I.e. 0 to n-1, n to 2n-1, 2n to 3n-1, etc. Only returns full
* sets of rows.
*
* @param n the number of rows to return for each iteration
*/
public Stream steppingStream(int n) {
return Streams.stream(steppingIterator(n));
}
/**
* Streams over rolling sets of rows. I.e. 0 to n-1, 1 to n, 2 to n+1, etc.
*
* @param n the number of rows to return for each iteration
*/
public Stream rollingStream(int n) {
return Streams.stream(rollingIterator(n));
}
/**
* Transposes data in the table, switching rows for columns. For example, a table like this.
* value1 | value2 |
* -------------------------------
* 1 | 2 |
* 1.1 | 2.1 |
* 1.2 | 2.2 |
*
* Is transposed into the following
* 0 | 1 | 2 |
* -------------------------------------
* 1 | 1.1 | 1.2 |
* 2 | 2.1 | 2.2 |
*
* @see Table#transpose(boolean,boolean)
* @return transposed table
*/
public Table transpose() {
return transpose(false, false);
}
/**
* Transposes data in the table, switching rows for columns. For example, a table like this.
* label | value1 | value2 |
* -------------------------------
* row1 | 1 | 2 |
* row2 | 1.1 | 2.1 |
* row3 | 1.2 | 2.2 |
*
*
Is transposed into the following
* label | row1 | row2 | row3 |
* -------------------------------------
* value1 | 1 | 1.1 | 1.2 |
* value2 | 2 | 2.1 | 2.2 |
*
* @param includeColumnHeadingsAsFirstColumn Toggle whether to include the column headings as
* first column in result
* @param useFirstColumnForHeadings Use the first column as the column headings in the result.
* Useful if the data set already has a first column which contains a set of labels
* @return The transposed table
*/
public Table transpose(
boolean includeColumnHeadingsAsFirstColumn, boolean useFirstColumnForHeadings) {
if (this.columnCount() == 0) {
return this;
}
// Validate first
int columnOffset = useFirstColumnForHeadings ? 1 : 0;
ColumnType resultColumnType = validateTableHasSingleColumnType(columnOffset);
Table transposed = Table.create(this.name);
if (includeColumnHeadingsAsFirstColumn) {
String columnName = useFirstColumnForHeadings ? this.column(0).name() : "0";
StringColumn labelColumn = StringColumn.create(columnName);
for (int i = columnOffset; i < this.columnCount(); i++) {
Column> columnToTranspose = this.column(i);
labelColumn.append(columnToTranspose.name());
}
transposed.addColumns(labelColumn);
}
if (useFirstColumnForHeadings) {
transpose(transposed, resultColumnType, row -> String.valueOf(this.get(row, 0)), 1);
} else {
// default column labelling
return transpose(
transposed, resultColumnType, row -> String.valueOf(transposed.columnCount()), 0);
}
return transposed;
}
private ColumnType validateTableHasSingleColumnType(int startingColumn) {
// If all columns are of the same type
ColumnType[] columnTypes = this.typeArray();
long distinctColumnTypesCount =
Arrays.stream(columnTypes).skip(startingColumn).distinct().count();
if (distinctColumnTypesCount > 1) {
throw new IllegalArgumentException(
"This operation currently only supports tables where value columns are of the same type");
}
return columnTypes[startingColumn];
}
@SuppressWarnings({"unchecked", "rawtypes"})
private Table transpose(
Table transposed,
ColumnType resultColumnType,
IntFunction columnNameExtractor,
int startingColumn) {
for (int row = 0; row < this.rowCount(); row++) {
String columnName = columnNameExtractor.apply(row);
Column column = resultColumnType.create(columnName);
for (int col = startingColumn; col < this.columnCount(); col++) {
column.append(this.column(col), row);
}
transposed.addColumns(column);
}
return transposed;
}
/**
* Melt implements the 'tidy' melt operation as described in these papers by Hadley Wickham.
*
* Tidy concepts: see https://www.jstatsoft.org/article/view/v059i10
*
*
Cast function details: see https://www.jstatsoft.org/article/view/v021i12
*
*
In short, melt turns columns into rows, but in a particular way. Used with the cast method,
* it can help make data tidy. In a tidy dataset, every variable is a column and every observation
* a row.
*
*
This method returns a table that contains all the data in this table, but organized such
* that there is a set of identifier variables (columns) and a single measured variable (column).
* For example, given a table with columns:
*
*
patient_id, gender, age, weight, temperature,
*
*
it returns a table with the columns:
*
*
patient_id, variable, value
*
*
In the new format, the strings age, weight, and temperature have become cells in the
* measurement table, such that a single row in the source table might look like this in the
* result table:
*
*
1234, gender, male 1234, age, 42 1234, weight, 186 1234, temperature, 97.4
*
*
This kind of structure often makes for a good intermediate format for performing subsequent
* transformations. It is especially useful when combined with the {@link #cast()} operation
*
* @param idVariables A list of column names intended to be used as identifiers. In he example,
* only patient_id would be an identifier
* @param measuredVariables A list of columns intended to be used as measured variables. All
* columns must have the same type
* @param dropMissing drop any row where the value is missing
*/
public Table melt(
List idVariables, List> measuredVariables, Boolean dropMissing) {
Table result = Table.create(name);
for (String idColName : idVariables) {
result.addColumns(column(idColName).type().create(idColName));
}
result.addColumns(
StringColumn.create(MELT_VARIABLE_COLUMN_NAME),
DoubleColumn.create(MELT_VALUE_COLUMN_NAME));
List measureColumnNames =
measuredVariables.stream().map(Column::name).collect(Collectors.toList());
TableSliceGroup slices = splitOn(idVariables.toArray(new String[0]));
for (TableSlice slice : slices) {
for (Row row : slice) {
for (String colName : measureColumnNames) {
if (!dropMissing || !row.isMissing(colName)) {
writeIdVariables(idVariables, result, row);
result.stringColumn(MELT_VARIABLE_COLUMN_NAME).append(colName);
double value = row.getNumber(colName);
result.doubleColumn(MELT_VALUE_COLUMN_NAME).append(value);
}
}
}
}
return result;
}
/** Writes one row of id variables into the result table */
private void writeIdVariables(List idVariables, Table result, Row row) {
for (String id : idVariables) {
Column> resultColumn = result.column(id);
final ColumnType columnType = resultColumn.type();
if (columnType.equals(ColumnType.STRING)) {
StringColumn sc = (StringColumn) resultColumn;
sc.append(row.getString(resultColumn.name()));
} else if (columnType.equals(ColumnType.TEXT)) {
TextColumn sc = (TextColumn) resultColumn;
sc.append(row.getString(resultColumn.name()));
} else if (columnType.equals(ColumnType.INTEGER)) {
IntColumn ic = (IntColumn) resultColumn;
ic.append(row.getInt(resultColumn.name()));
} else if (columnType.equals(ColumnType.LONG)) {
LongColumn ic = (LongColumn) resultColumn;
ic.append(row.getLong(resultColumn.name()));
} else if (columnType.equals(ColumnType.SHORT)) {
ShortColumn ic = (ShortColumn) resultColumn;
ic.append(row.getShort(resultColumn.name()));
} else if (columnType.equals(ColumnType.LOCAL_DATE)) {
DateColumn ic = (DateColumn) resultColumn;
ic.appendInternal(row.getPackedDate(resultColumn.name()));
} else if (columnType.equals(ColumnType.LOCAL_DATE_TIME)) {
DateTimeColumn ic = (DateTimeColumn) resultColumn;
ic.appendInternal(row.getPackedDateTime(resultColumn.name()));
} else if (columnType.equals(ColumnType.LOCAL_TIME)) {
TimeColumn ic = (TimeColumn) resultColumn;
ic.appendInternal(row.getPackedTime(resultColumn.name()));
} else if (columnType.equals(ColumnType.INSTANT)) {
InstantColumn ic = (InstantColumn) resultColumn;
ic.appendInternal(row.getPackedInstant(resultColumn.name()));
} else if (columnType.equals(ColumnType.BOOLEAN)) {
BooleanColumn ic = (BooleanColumn) resultColumn;
ic.append(row.getBooleanAsByte(resultColumn.name()));
} else if (columnType.equals(ColumnType.DOUBLE)) {
DoubleColumn ic = (DoubleColumn) resultColumn;
ic.append(row.getDouble(resultColumn.name()));
} else if (columnType.equals(ColumnType.FLOAT)) {
FloatColumn ic = (FloatColumn) resultColumn;
ic.append(row.getFloat(resultColumn.name()));
} else {
throw new IllegalArgumentException("melt() does not support column type " + columnType);
}
}
}
/**
* Cast implements the 'tidy' cast operation as described in these papers by Hadley Wickham:
*
* Cast takes a table in 'molten' format, such as is produced by the {@link #melt(List, List,
* Boolean)} t} method, and returns a version in standard tidy format.
*
*
The molten table should have a StringColumn called "variable" and a column called "value"
* Every unique variable name will become a column in the output table.
*
*
All other columns in this table are considered identifier variable. Each combination of
* identifier variables specifies an observation, so there will be one row for each, with the
* other variables added.
*
*
Variable columns are returned in an arbitrary order. Use {@link #reorderColumns(String...)}
* if column order is important.
*
*
Tidy concepts: see https://www.jstatsoft.org/article/view/v059i10
*
*
Cast function details: see https://www.jstatsoft.org/article/view/v021i12
*/
public Table cast() {
StringColumn variableNames = stringColumn(MELT_VARIABLE_COLUMN_NAME);
List> idColumns =
columnList.stream()
.filter(
column ->
!column.name().equals(MELT_VARIABLE_COLUMN_NAME)
&& !column.name().equals(MELT_VALUE_COLUMN_NAME))
.collect(toList());
Table result = Table.create(name);
for (Column> idColumn : idColumns) {
result.addColumns(idColumn.type().create(idColumn.name()));
}
StringColumn uniqueVariableNames = variableNames.unique();
for (String varName : uniqueVariableNames) {
result.addColumns(DoubleColumn.create(varName));
}
TableSliceGroup slices = splitOn(idColumns.stream().map(Column::name).toArray(String[]::new));
for (TableSlice slice : slices) {
Table sliceTable = slice.asTable();
for (Column> idColumn : idColumns) {
final ColumnType columnType = idColumn.type();
if (columnType.equals(ColumnType.STRING)) {
StringColumn source = (StringColumn) sliceTable.column(idColumn.name());
StringColumn dest = (StringColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.TEXT)) {
TextColumn source = (TextColumn) sliceTable.column(idColumn.name());
TextColumn dest = (TextColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.INTEGER)) {
IntColumn source = (IntColumn) sliceTable.column(idColumn.name());
IntColumn dest = (IntColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.LONG)) {
LongColumn source = (LongColumn) sliceTable.column(idColumn.name());
LongColumn dest = (LongColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.SHORT)) {
ShortColumn source = (ShortColumn) sliceTable.column(idColumn.name());
ShortColumn dest = (ShortColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.BOOLEAN)) {
BooleanColumn source = (BooleanColumn) sliceTable.column(idColumn.name());
BooleanColumn dest = (BooleanColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.LOCAL_DATE)) {
DateColumn source = (DateColumn) sliceTable.column(idColumn.name());
DateColumn dest = (DateColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.LOCAL_DATE_TIME)) {
DateTimeColumn source = (DateTimeColumn) sliceTable.column(idColumn.name());
DateTimeColumn dest = (DateTimeColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.INSTANT)) {
InstantColumn source = (InstantColumn) sliceTable.column(idColumn.name());
InstantColumn dest = (InstantColumn) result.column(idColumn.name());
dest.append(source.get(0));
} else if (columnType.equals(ColumnType.LOCAL_TIME)) {
TimeColumn source = (TimeColumn) sliceTable.column(idColumn.name());
TimeColumn dest = (TimeColumn) result.column(idColumn.name());
dest.append(source.get(0));
}
}
for (String varName : uniqueVariableNames) {
DoubleColumn dest = (DoubleColumn) result.column(varName);
Table sliceRow =
sliceTable.where(sliceTable.stringColumn(MELT_VARIABLE_COLUMN_NAME).isEqualTo(varName));
if (!sliceRow.isEmpty()) {
dest.append(sliceRow.doubleColumn(MELT_VALUE_COLUMN_NAME).get(0));
} else {
dest.appendMissing();
}
}
}
return result;
}
/**
* Applies the operation in {@code doable} to every row in the table
*
* @deprecated use {@code stream().forEach}
*/
@Deprecated
public void doWithRows(Consumer doable) {
stream().forEach(doable);
}
/**
* Applies the predicate to each row, and return true if any row returns true
*
* @deprecated use {@code stream().anyMatch}
*/
@Deprecated
public boolean detect(Predicate predicate) {
return stream().anyMatch(predicate);
}
/** @deprecated use steppingStream(n).forEach(rowConsumer) */
@Deprecated
public void stepWithRows(Consumer rowConsumer, int n) {
steppingStream(n).forEach(rowConsumer);
}
/** @deprecated use stream(2).forEach(rowConsumer) */
@Deprecated
public void doWithRows(Pairs pairs) {
rollingStream(2).forEach(rows -> pairs.doWithPair(rows[0], rows[1]));
}
/** @deprecated use stream(2).forEach(rowConsumer) */
@Deprecated
public void doWithRowPairs(Consumer pairConsumer) {
rollingStream(2).forEach(rows -> pairConsumer.accept(new RowPair(rows[0], rows[1])));
}
/** @deprecated use stream(n).forEach(rowConsumer) */
@Deprecated
public void rollWithRows(Consumer rowConsumer, int n) {
rollingStream(n).forEach(rowConsumer);
}
@Deprecated
public static class RowPair {
private final Row first;
private final Row second;
public RowPair(Row first, Row second) {
this.first = first;
this.second = second;
}
public Row getFirst() {
return first;
}
public Row getSecond() {
return second;
}
}
@Deprecated
interface Pairs {
void doWithPair(Row row1, Row row2);
/**
* Returns an object containing the results of applying doWithPair() to the rows in a table.
*
* The default implementation throws an exception, to be used if the operation produces only
* side effects
*/
default Object getResult() {
throw new UnsupportedOperationException("This Pairs function returns no results");
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy