All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tech.tablesaw.plotly.api.TukeyMeanDifferencePlot Maven / Gradle / Ivy

There is a newer version: 0.43.3
Show newest version
package tech.tablesaw.plotly.api;

import com.google.common.base.Preconditions;
import java.util.Arrays;
import org.apache.commons.math3.stat.StatUtils;
import tech.tablesaw.api.NumericColumn;
import tech.tablesaw.api.Table;
import tech.tablesaw.plotly.components.Axis;
import tech.tablesaw.plotly.components.Figure;
import tech.tablesaw.plotly.components.Layout;
import tech.tablesaw.plotly.traces.ScatterTrace;

/**
 * A Tukey Mean-Difference Plot (AKA a Bland-Altman plot) is a kind of scatter plot used frequently
 * in medicine, biology and other fields, is used to visualize the differences between two
 * quantitative measurements. In particular, it is often used to evaluate whether two tests produce
 * 'the same' result.
 *
 * 

For two numeric arrays, a and b, the plot shows the mean for each pair of observations (a + b) * / 2, as well as the differences between them: a - b. * *

For more information: https://en.wikipedia.org/wiki/Bland%E2%80%93Altman_plot */ public class TukeyMeanDifferencePlot { /** * Returns a figure containing a Tukey Mean-Difference Plot describing the differences between the * data in two columns of interest * * @param title A title for the plot * @param measure The measure being compared on the plot (e.g "inches" or "height in inches" * @param table The table containing the columns of interest * @param columnName1 The name of the first numeric column containing the data to plot * @param columnName2 The name of the second numeric column containing the data to plot * @return A quantile plot */ public static Figure create( String title, String measure, Table table, String columnName1, String columnName2) { NumericColumn xCol = table.nCol(columnName1); NumericColumn yCol = table.nCol(columnName2); return create(title, measure, xCol.asDoubleArray(), yCol.asDoubleArray()); } /** * Returns a figure containing a QQ Plot describing the differences between the distribution of * values in the columns of interest * * @param title A title for the plot * @param measure The measure being compared on the plot (e.g "inches" or "height in inches" * @param xData The data to plot on the x Axis * @param yData The data to plot on the y Axis * @return A quantile plot */ public static Figure create(String title, String measure, double[] xData, double[] yData) { Preconditions.checkArgument(xData.length != 0, "x Data array is empty"); Preconditions.checkArgument(yData.length != 0, "x Data array is empty"); if (xData.length != yData.length) { double[] interpolatedData; if (xData.length < yData.length) { interpolatedData = interpolate(yData, xData.length); yData = interpolatedData; } else { interpolatedData = interpolate(xData, yData.length); xData = interpolatedData; } } Arrays.sort(xData); Arrays.sort(yData); double[] averagePoints = new double[xData.length]; double[] differencePoints = new double[xData.length]; for (int i = 0; i < xData.length; i++) { averagePoints[i] = (xData[i] + yData[i]) / 2.0; differencePoints[i] = (xData[i] - yData[i]); } double xMin = StatUtils.min(xData); double xMax = StatUtils.max(xData); double[] zeroLineX = {xMin, xMax}; double[] zeroLineY = {0, 0}; // Draw the line indicating equal distributions (this is zero in this plot) ScatterTrace trace1 = ScatterTrace.builder(zeroLineX, zeroLineY) .mode(ScatterTrace.Mode.LINE) .name("y = x") .build(); // Draw the actual data points ScatterTrace trace2 = ScatterTrace.builder(averagePoints, differencePoints).name("mean x difference").build(); Layout layout = Layout.builder() .title(title) .xAxis(Axis.builder().title("mean (" + measure + ")").build()) .yAxis(Axis.builder().title("difference (" + measure + ")").build()) .height(700) .width(900) .build(); return new Figure(layout, trace1, trace2); } /** * Returns a double array, whose values are quantiles from the given source, based on the given * size. The idea is to produce size elements that represent the quantiles of source array * * @param source The array to whose quantiles are calculated * @param size The size of the array to return */ private static double[] interpolate(double[] source, int size) { double[] interpolatedData = new double[size]; for (int i = 0; i < size; i++) { double value = ((i + .5) / (double) size) * 100; interpolatedData[i] = StatUtils.percentile(source, value); } return interpolatedData; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy