All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nl.open.jwtdependency.com.fasterxml.jackson.databind.JsonDeserializer Maven / Gradle / Ivy

Go to download

This is a drop in replacement for the auth0 java-jwt library (see https://github.com/auth0/java-jwt). This jar makes sure there are no external dependencies (e.g. fasterXml, Apacha Commons) needed. This is useful when deploying to an application server (e.g. tomcat with Alfreso or Pega).

The newest version!
package com.fasterxml.jackson.databind;

import java.io.IOException;
import java.util.Collection;

import com.fasterxml.jackson.core.*;
import com.fasterxml.jackson.databind.deser.BeanDeserializerFactory;
import com.fasterxml.jackson.databind.deser.SettableBeanProperty;
import com.fasterxml.jackson.databind.deser.impl.ObjectIdReader;
import com.fasterxml.jackson.databind.jsontype.TypeDeserializer;
import com.fasterxml.jackson.databind.util.NameTransformer;

/**
 * Abstract class that defines API used by {@link ObjectMapper} (and
 * other chained {@link JsonDeserializer}s too) to deserialize Objects of
 * arbitrary types from JSON, using provided {@link JsonParser}.
 *

* Custom deserializers should usually not directly extend this class, * but instead extend {@link com.fasterxml.jackson.databind.deser.std.StdDeserializer} * (or its subtypes like {@link com.fasterxml.jackson.databind.deser.std.StdScalarDeserializer}). *

* If deserializer is an aggregate one -- meaning it delegates handling of some * of its contents by using other deserializer(s) -- it typically also needs * to implement {@link com.fasterxml.jackson.databind.deser.ResolvableDeserializer}, * which can locate dependant deserializers. This is important to allow dynamic * overrides of deserializers; separate call interface is needed to separate * resolution of dependant deserializers (which may have cyclic link back * to deserializer itself, directly or indirectly). *

* In addition, to support per-property annotations (to configure aspects * of deserialization on per-property basis), deserializers may want * to implement * {@link com.fasterxml.jackson.databind.deser.ContextualDeserializer}, * which allows specialization of deserializers: call to * {@link com.fasterxml.jackson.databind.deser.ContextualDeserializer#createContextual} * is passed information on property, and can create a newly configured * deserializer for handling that particular property. *

* If both * {@link com.fasterxml.jackson.databind.deser.ResolvableDeserializer} and * {@link com.fasterxml.jackson.databind.deser.ContextualDeserializer} * are implemented, resolution of deserializers occurs before * contextualization. */ public abstract class JsonDeserializer { /* /********************************************************** /* Main deserialization methods /********************************************************** */ /** * Method that can be called to ask implementation to deserialize * JSON content into the value type this serializer handles. * Returned instance is to be constructed by method itself. *

* Pre-condition for this method is that the parser points to the * first event that is part of value to deserializer (and which * is never JSON 'null' literal, more on this below): for simple * types it may be the only value; and for structured types the * Object start marker or a FIELD_NAME. *

*

* The two possible input conditions for structured types result * from polymorphism via fields. In the ordinary case, Jackson * calls this method when it has encountered an OBJECT_START, * and the method implementation must advance to the next token to * see the first field name. If the application configures * polymorphism via a field, then the object looks like the following. *

     *      {
     *          "@class": "class name",
     *          ...
     *      }
     *  
* Jackson consumes the two tokens (the @class field name * and its value) in order to learn the class and select the deserializer. * Thus, the stream is pointing to the FIELD_NAME for the first field * after the @class. Thus, if you want your method to work correctly * both with and without polymorphism, you must begin your method with: *
     *       if (jp.getCurrentToken() == JsonToken.START_OBJECT) {
     *         jp.nextToken();
     *       }
     *  
* This results in the stream pointing to the field name, so that * the two conditions align. *

* Post-condition is that the parser will point to the last * event that is part of deserialized value (or in case deserialization * fails, event that was not recognized or usable, which may be * the same event as the one it pointed to upon call). *

* Note that this method is never called for JSON null literal, * and thus deserializers need (and should) not check for it. * * @param p Parsed used for reading JSON content * @param ctxt Context that can be used to access information about * this deserialization activity. * * @return Deserialized value */ public abstract T deserialize(JsonParser p, DeserializationContext ctxt) throws IOException, JsonProcessingException; /** * Alternate deserialization method (compared to the most commonly * used, {@link #deserialize(JsonParser, DeserializationContext)}), * which takes in initialized value instance, to be * configured and/or populated by deserializer. * Method is not necessarily used (or supported) by all types * (it will not work for immutable types, for obvious reasons): * most commonly it is used for Collections and Maps. * It may be used both with "updating readers" (for POJOs) and * when Collections and Maps use "getter as setter". *

* Default implementation just throws * {@link UnsupportedOperationException}, to indicate that types * that do not explicitly add support do not necessarily support * update-existing-value operation (esp. immutable types) */ public T deserialize(JsonParser p, DeserializationContext ctxt, T intoValue) throws IOException, JsonProcessingException { throw new UnsupportedOperationException("Can not update object of type " +intoValue.getClass().getName()+" (by deserializer of type "+getClass().getName()+")"); } /** * Deserialization called when type being deserialized is defined to * contain additional type identifier, to allow for correctly * instantiating correct subtype. This can be due to annotation on * type (or its supertype), or due to global settings without * annotations. *

* Default implementation may work for some types, but ideally subclasses * should not rely on current default implementation. * Implementation is mostly provided to avoid compilation errors with older * code. * * @param typeDeserializer Deserializer to use for handling type information */ public Object deserializeWithType(JsonParser p, DeserializationContext ctxt, TypeDeserializer typeDeserializer) throws IOException { // We could try calling return typeDeserializer.deserializeTypedFromAny(p, ctxt); } /* /********************************************************** /* Fluent factory methods for constructing decorated versions /********************************************************** */ /** * Method that will return deserializer instance that is able * to handle "unwrapped" value instances * If no unwrapped instance can be constructed, will simply * return this object as-is. *

* Default implementation just returns 'this' * indicating that no unwrapped variant exists */ public JsonDeserializer unwrappingDeserializer(NameTransformer unwrapper) { return this; } /** * Method that can be called to try to replace deserializer this deserializer * delegates calls to. If not supported (either this deserializer does not * delegate anything; or it does not want any changes), should either * throw {@link UnsupportedOperationException} (if operation does not * make sense or is not allowed); or return this deserializer as is. * * @since 2.1 */ public JsonDeserializer replaceDelegatee(JsonDeserializer delegatee) { throw new UnsupportedOperationException(); } /* /********************************************************** /* Introspection methods for figuring out configuration/setup /* of this deserializer instance and/or type it handles /********************************************************** */ /** * Method for accessing type of values this deserializer produces. * Note that this information is not guaranteed to be exact -- it * may be a more generic (super-type) -- but it should not be * incorrect (return a non-related type). *

* Default implementation will return null, which means almost same * same as returning Object.class would; that is, that * nothing is known about handled type. *

* @since 2.3 */ public Class handledType() { return null; } /** * Method called to see if deserializer instance is cachable and * usable for other properties of same type (type for which instance * was created). *

* Note that cached instances are still resolved on per-property basis, * if instance implements {@link com.fasterxml.jackson.databind.deser.ResolvableDeserializer}: * cached instance is just as the base. This means that in most cases it is safe to * cache instances; however, it only makes sense to cache instances * if instantiation is expensive, or if instances are heavy-weight. *

* Default implementation returns false, to indicate that no caching * is done. */ public boolean isCachable() { return false; } /** * Accessor that can be used to determine if this deserializer uses * another deserializer for actual deserialization, by delegating * calls. If so, will return immediate delegate (which itself may * delegate to further deserializers); otherwise will return null. * * @return Deserializer this deserializer delegates calls to, if null; * null otherwise. * * @since 2.1 */ public JsonDeserializer getDelegatee() { return null; } /** * Method that will * either return null to indicate that type being deserializers * has no concept of properties; or a collection of identifiers * for which toString will give external property * name. * This is only to be used for error reporting and diagnostics * purposes (most commonly, to accompany "unknown property" * exception). * * @since 2.0 */ public Collection getKnownPropertyNames() { return null; } /* /********************************************************** /* Other accessors /********************************************************** */ /** * Method that can be called to determine value to be used for * representing null values (values deserialized when JSON token * is {@link JsonToken#VALUE_NULL}). Usually this is simply * Java null, but for some types (especially primitives) it may be * necessary to use non-null values. *

* Since version 2.6 (in which the context argument was added), call is * expected to be made each and every time a null token needs to * be handled. *

* Default implementation simply returns null. * * @since 2.6 Added to replace earlier no-arguments variant */ public T getNullValue(DeserializationContext ctxt) throws JsonMappingException { // Change the direction in 2.7 return getNullValue(); } /** * Method called to determine value to be used for "empty" values * (most commonly when deserializing from empty JSON Strings). * Usually this is same as {@link #getNullValue} (which in turn * is usually simply Java null), but it can be overridden * for types. Or, if type should never be converted from empty * String, method can also throw an exception. *

* Since version 2.6 (in which the context argument was added), call is * expected to be made each and every time an empty value is needed. *

* Default implementation simple calls {@link #getNullValue} and * returns value. * * @since 2.6 Added to replace earlier no-arguments variant */ public T getEmptyValue(DeserializationContext ctxt) throws JsonMappingException { // Change the direction in 2.7 return getEmptyValue(); } /** * Accessor that can be used to check whether this deserializer * is expecting to possibly get an Object Identifier value instead of full value * serialization, and if so, should be able to resolve it to actual * Object instance to return as deserialized value. *

* Default implementation returns null, as support can not be implemented * generically. Some standard deserializers (most notably * {@link com.fasterxml.jackson.databind.deser.BeanDeserializer}) * do implement this feature, and may return reader instance, depending on exact * configuration of instance (which is based on type, and referring property). * * @return ObjectIdReader used for resolving possible Object Identifier * value, instead of full value serialization, if deserializer can do that; * null if no Object Id is expected. * * @since 2.0 */ public ObjectIdReader getObjectIdReader() { return null; } /** * Method needed by {@link BeanDeserializerFactory} to properly link * managed- and back-reference pairs. * * @since 2.2 (was moved out of BeanDeserializerBase) */ public SettableBeanProperty findBackReference(String refName) { throw new IllegalArgumentException("Can not handle managed/back reference '"+refName +"': type: value deserializer of type "+getClass().getName()+" does not support them"); } /* /********************************************************** /* Deprecated methods /********************************************************** */ /** * @deprecated Since 2.6 Use overloaded variant that takes context argument */ @Deprecated public T getNullValue() { return null; } /** * @deprecated Since 2.6 Use overloaded variant that takes context argument */ @Deprecated public T getEmptyValue() { return getNullValue(); } /* /********************************************************** /* Helper classes /********************************************************** */ /** * This marker class is only to be used with annotations, to * indicate that no deserializer is configured. *

* Specifically, this class is to be used as the marker for * annotation {@link com.fasterxml.jackson.databind.annotation.JsonDeserialize} */ public abstract static class None extends JsonDeserializer { private None() { } // not to be instantiated } }