All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nl.open.jwtdependency.org.bouncycastle.crypto.kems.ECIESKeyEncapsulation Maven / Gradle / Ivy

Go to download

This is a drop in replacement for the auth0 java-jwt library (see https://github.com/auth0/java-jwt). This jar makes sure there are no external dependencies (e.g. fasterXml, Apacha Commons) needed. This is useful when deploying to an application server (e.g. tomcat with Alfreso or Pega).

The newest version!
package org.bouncycastle.crypto.kems;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DerivationFunction;
import org.bouncycastle.crypto.KeyEncapsulation;
import org.bouncycastle.crypto.params.ECDomainParameters;
import org.bouncycastle.crypto.params.ECKeyParameters;
import org.bouncycastle.crypto.params.ECPrivateKeyParameters;
import org.bouncycastle.crypto.params.ECPublicKeyParameters;
import org.bouncycastle.crypto.params.KDFParameters;
import org.bouncycastle.crypto.params.KeyParameter;
import org.bouncycastle.math.ec.ECCurve;
import org.bouncycastle.math.ec.ECMultiplier;
import org.bouncycastle.math.ec.ECPoint;
import org.bouncycastle.math.ec.FixedPointCombMultiplier;
import org.bouncycastle.util.Arrays;
import org.bouncycastle.util.BigIntegers;

/**
 * The ECIES Key Encapsulation Mechanism (ECIES-KEM) from ISO 18033-2.
 */
public class ECIESKeyEncapsulation
    implements KeyEncapsulation
{
    private static final BigInteger ONE = BigInteger.valueOf(1);

    private DerivationFunction kdf;
    private SecureRandom rnd;
    private ECKeyParameters key;
    private boolean CofactorMode;
    private boolean OldCofactorMode;
    private boolean SingleHashMode;

    /**
     * Set up the ECIES-KEM.
     *
     * @param kdf the key derivation function to be used.
     * @param rnd the random source for the session key.
     */
    public ECIESKeyEncapsulation(
        DerivationFunction kdf,
        SecureRandom rnd)
    {
        this.kdf = kdf;
        this.rnd = rnd;
        this.CofactorMode = false;
        this.OldCofactorMode = false;
        this.SingleHashMode = false;
    }

    /**
     * Set up the ECIES-KEM.
     *
     * @param kdf             the key derivation function to be used.
     * @param rnd             the random source for the session key.
     * @param cofactorMode    true to use the new cofactor ECDH.
     * @param oldCofactorMode true to use the old cofactor ECDH.
     * @param singleHashMode  true to use single hash mode.
     */
    public ECIESKeyEncapsulation(
        DerivationFunction kdf,
        SecureRandom rnd,
        boolean cofactorMode,
        boolean oldCofactorMode,
        boolean singleHashMode)
    {
        this.kdf = kdf;
        this.rnd = rnd;

        // If both cofactorMode and oldCofactorMode are set to true
        // then the implementation will use the new cofactor ECDH 
        this.CofactorMode = cofactorMode;
        this.OldCofactorMode = oldCofactorMode;
        this.SingleHashMode = singleHashMode;
    }

    /**
     * Initialise the ECIES-KEM.
     *
     * @param key the recipient's public (for encryption) or private (for decryption) key.
     */
    public void init(CipherParameters key)
        throws IllegalArgumentException
    {
        if (!(key instanceof ECKeyParameters))
        {
            throw new IllegalArgumentException("EC key required");
        }
        else
        {
            this.key = (ECKeyParameters)key;
        }
    }

    /**
     * Generate and encapsulate a random session key.
     *
     * @param out    the output buffer for the encapsulated key.
     * @param outOff the offset for the output buffer.
     * @param keyLen the length of the session key.
     * @return the random session key.
     */
    public CipherParameters encrypt(byte[] out, int outOff, int keyLen)
        throws IllegalArgumentException
    {
        if (!(key instanceof ECPublicKeyParameters))
        {
            throw new IllegalArgumentException("Public key required for encryption");
        }

        ECPublicKeyParameters ecPubKey = (ECPublicKeyParameters)key;
        ECDomainParameters ecParams = ecPubKey.getParameters();
        ECCurve curve = ecParams.getCurve();
        BigInteger n = ecParams.getN();
        BigInteger h = ecParams.getH();

        // Generate the ephemeral key pair    
        BigInteger r = BigIntegers.createRandomInRange(ONE, n, rnd);

        // Compute the static-ephemeral key agreement
        BigInteger rPrime = CofactorMode ? r.multiply(h).mod(n) : r;

        ECMultiplier basePointMultiplier = createBasePointMultiplier();

        ECPoint[] ghTilde = new ECPoint[]{ 
            basePointMultiplier.multiply(ecParams.getG(), r),
            ecPubKey.getQ().multiply(rPrime)
        };

        // NOTE: More efficient than normalizing each individually
        curve.normalizeAll(ghTilde);

        ECPoint gTilde = ghTilde[0], hTilde = ghTilde[1];

        // Encode the ephemeral public key
        byte[] C = gTilde.getEncoded(false);
        System.arraycopy(C, 0, out, outOff, C.length);

        // Encode the shared secret value
        byte[] PEH = hTilde.getAffineXCoord().getEncoded();

        return deriveKey(keyLen, C, PEH);
    }

    /**
     * Generate and encapsulate a random session key.
     *
     * @param out    the output buffer for the encapsulated key.
     * @param keyLen the length of the session key.
     * @return the random session key.
     */
    public CipherParameters encrypt(byte[] out, int keyLen)
    {
        return encrypt(out, 0, keyLen);
    }

    /**
     * Decrypt an encapsulated session key.
     *
     * @param in     the input buffer for the encapsulated key.
     * @param inOff  the offset for the input buffer.
     * @param inLen  the length of the encapsulated key.
     * @param keyLen the length of the session key.
     * @return the session key.
     */
    public CipherParameters decrypt(byte[] in, int inOff, int inLen, int keyLen)
        throws IllegalArgumentException
    {
        if (!(key instanceof ECPrivateKeyParameters))
        {
            throw new IllegalArgumentException("Private key required for encryption");
        }

        ECPrivateKeyParameters ecPrivKey = (ECPrivateKeyParameters)key;
        ECDomainParameters ecParams = ecPrivKey.getParameters();
        ECCurve curve = ecParams.getCurve();
        BigInteger n = ecParams.getN();
        BigInteger h = ecParams.getH();

        // Decode the ephemeral public key
        byte[] C = new byte[inLen];
        System.arraycopy(in, inOff, C, 0, inLen);

        // NOTE: Decoded points are already normalized (i.e in affine form)
        ECPoint gTilde = curve.decodePoint(C);

        // Compute the static-ephemeral key agreement
        ECPoint gHat = gTilde;
        if ((CofactorMode) || (OldCofactorMode))
        {
            gHat = gHat.multiply(h);
        }

        BigInteger xHat = ecPrivKey.getD();
        if (CofactorMode)
        {
            xHat = xHat.multiply(h.modInverse(n)).mod(n);
        }

        ECPoint hTilde = gHat.multiply(xHat).normalize();

        // Encode the shared secret value
        byte[] PEH = hTilde.getAffineXCoord().getEncoded();

        return deriveKey(keyLen, C, PEH);
    }

    /**
     * Decrypt an encapsulated session key.
     *
     * @param in     the input buffer for the encapsulated key.
     * @param keyLen the length of the session key.
     * @return the session key.
     */
    public CipherParameters decrypt(byte[] in, int keyLen)
    {
        return decrypt(in, 0, in.length, keyLen);
    }

    protected ECMultiplier createBasePointMultiplier()
    {
        return new FixedPointCombMultiplier();
    }

    protected KeyParameter deriveKey(int keyLen, byte[] C, byte[] PEH)
    {
        byte[] kdfInput = PEH;
        if (SingleHashMode)
        {
            kdfInput = Arrays.concatenate(C, PEH);
            Arrays.fill(PEH, (byte)0);
        }

        try
        {
            // Initialise the KDF
            kdf.init(new KDFParameters(kdfInput, null));
    
            // Generate the secret key
            byte[] K = new byte[keyLen];
            kdf.generateBytes(K, 0, K.length);

            // Return the ciphertext
            return new KeyParameter(K);
        }
        finally
        {
            Arrays.fill(kdfInput, (byte)0);
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy