All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nl.open.jwtdependency.org.bouncycastle.crypto.signers.DSASigner Maven / Gradle / Ivy

Go to download

This is a drop in replacement for the auth0 java-jwt library (see https://github.com/auth0/java-jwt). This jar makes sure there are no external dependencies (e.g. fasterXml, Apacha Commons) needed. This is useful when deploying to an application server (e.g. tomcat with Alfreso or Pega).

The newest version!
package org.bouncycastle.crypto.signers;

import java.math.BigInteger;
import java.security.SecureRandom;

import org.bouncycastle.crypto.CipherParameters;
import org.bouncycastle.crypto.DSA;
import org.bouncycastle.crypto.params.DSAKeyParameters;
import org.bouncycastle.crypto.params.DSAParameters;
import org.bouncycastle.crypto.params.DSAPrivateKeyParameters;
import org.bouncycastle.crypto.params.DSAPublicKeyParameters;
import org.bouncycastle.crypto.params.ParametersWithRandom;

/**
 * The Digital Signature Algorithm - as described in "Handbook of Applied
 * Cryptography", pages 452 - 453.
 */
public class DSASigner
    implements DSA
{
    private final DSAKCalculator kCalculator;

    private DSAKeyParameters key;
    private SecureRandom    random;

    /**
     * Default configuration, random K values.
     */
    public DSASigner()
    {
        this.kCalculator = new RandomDSAKCalculator();
    }

    /**
     * Configuration with an alternate, possibly deterministic calculator of K.
     *
     * @param kCalculator a K value calculator.
     */
    public DSASigner(DSAKCalculator kCalculator)
    {
        this.kCalculator = kCalculator;
    }

    public void init(
        boolean                 forSigning,
        CipherParameters        param)
    {
        SecureRandom providedRandom = null;

        if (forSigning)
        {
            if (param instanceof ParametersWithRandom)
            {
                ParametersWithRandom rParam = (ParametersWithRandom)param;

                this.key = (DSAPrivateKeyParameters)rParam.getParameters();
                providedRandom = rParam.getRandom();
            }
            else
            {
                this.key = (DSAPrivateKeyParameters)param;
            }
        }
        else
        {
            this.key = (DSAPublicKeyParameters)param;
        }

        this.random = initSecureRandom(forSigning && !kCalculator.isDeterministic(), providedRandom);
    }

    /**
     * generate a signature for the given message using the key we were
     * initialised with. For conventional DSA the message should be a SHA-1
     * hash of the message of interest.
     *
     * @param message the message that will be verified later.
     */
    public BigInteger[] generateSignature(
        byte[] message)
    {
        DSAParameters   params = key.getParameters();
        BigInteger      q = params.getQ();
        BigInteger      m = calculateE(q, message);
        BigInteger      x = ((DSAPrivateKeyParameters)key).getX();

        if (kCalculator.isDeterministic())
        {
            kCalculator.init(q, x, message);
        }
        else
        {
            kCalculator.init(q, random);
        }

        BigInteger  k = kCalculator.nextK();

        BigInteger  r = params.getG().modPow(k, params.getP()).mod(q);

        k = k.modInverse(q).multiply(m.add(x.multiply(r)));

        BigInteger  s = k.mod(q);

        return new BigInteger[]{ r, s };
    }

    /**
     * return true if the value r and s represent a DSA signature for
     * the passed in message for standard DSA the message should be a
     * SHA-1 hash of the real message to be verified.
     */
    public boolean verifySignature(
        byte[]      message,
        BigInteger  r,
        BigInteger  s)
    {
        DSAParameters   params = key.getParameters();
        BigInteger      q = params.getQ();
        BigInteger      m = calculateE(q, message);
        BigInteger      zero = BigInteger.valueOf(0);

        if (zero.compareTo(r) >= 0 || q.compareTo(r) <= 0)
        {
            return false;
        }

        if (zero.compareTo(s) >= 0 || q.compareTo(s) <= 0)
        {
            return false;
        }

        BigInteger  w = s.modInverse(q);

        BigInteger  u1 = m.multiply(w).mod(q);
        BigInteger  u2 = r.multiply(w).mod(q);

        BigInteger p = params.getP();
        u1 = params.getG().modPow(u1, p);
        u2 = ((DSAPublicKeyParameters)key).getY().modPow(u2, p);

        BigInteger  v = u1.multiply(u2).mod(p).mod(q);

        return v.equals(r);
    }

    private BigInteger calculateE(BigInteger n, byte[] message)
    {
        if (n.bitLength() >= message.length * 8)
        {
            return new BigInteger(1, message);
        }
        else
        {
            byte[] trunc = new byte[n.bitLength() / 8];

            System.arraycopy(message, 0, trunc, 0, trunc.length);

            return new BigInteger(1, trunc);
        }
    }

    protected SecureRandom initSecureRandom(boolean needed, SecureRandom provided)
    {
        return !needed ? null : (provided != null) ? provided : new SecureRandom();
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy