All Downloads are FREE. Search and download functionalities are using the official Maven repository.

nl.topicus.jdbc.shaded.org.threeten.bp.Clock Maven / Gradle / Ivy

/*
 * Copyright (c) 2007-present, Stephen Colebourne & Michael Nascimento Santos
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 *  * Neither the name of JSR-310 nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package nl.topicus.jdbc.shaded.org.threeten.bp;

import static nl.topicus.jdbc.shaded.org.threeten.bp.LocalTime.NANOS_PER_MINUTE;
import static nl.topicus.jdbc.shaded.org.threeten.bp.LocalTime.NANOS_PER_SECOND;

import java.io.Serializable;
import java.util.TimeZone;

import nl.topicus.jdbc.shaded.org.threeten.bp.jdk8.Jdk8Methods;

/**
 * A clock providing access to the current instant, date and time using a time-zone.
 * 

* Instances of this class are used to find the current instant, which can be * interpreted using the stored time-zone to find the current date and time. * As such, a clock can be used instead of {@link System#currentTimeMillis()} * and {@link TimeZone#getDefault()}. *

* Use of a {@code Clock} is optional. All key date-time classes also have a * {@code now()} factory method that uses the system clock in the default time zone. * The primary purpose of this abstraction is to allow alternate clocks to be * plugged in as and when required. Applications use an object to obtain the * current time rather than a static method. This can simplify testing. *

* Best practice for applications is to pass a {@code Clock} into any method * that requires the current instant. A dependency injection framework is one * way to achieve this: *

 *  public class MyBean {
 *    private Clock clock;  // dependency inject
 *    ...
 *    public void process(LocalDate eventDate) {
 *      if (eventDate.isBefore(LocalDate.now(clock)) {
 *        ...
 *      }
 *    }
 *  }
 * 
* This approach allows an alternate clock, such as {@link #fixed(Instant, ZoneId) fixed} * or {@link #offset(Clock, Duration) offset} to be used during testing. *

* The {@code system} factory methods provide clocks based on the best available * system clock This may use {@link System#currentTimeMillis()}, or a higher * resolution clock if one is available. * *

Specification for implementors

* This abstract class must be implemented with care to ensure other operate correctly. * All implementations that can be instantiated must be final, immutable and thread-safe. *

* The principal methods are defined to allow the throwing of an exception. * In normal use, no exceptions will be thrown, however one possible implementation would be to * obtain the time from a central time server across the network. Obviously, in this case the * lookup could fail, and so the method is permitted to throw an exception. *

* The returned instants from {@code Clock} work on a time-scale that ignores leap seconds. * If the implementation wraps a source that provides leap second information, then a mechanism * should be used to "smooth" the leap second, such as UTC-SLS. *

* Implementations should implement {@code Serializable} wherever possible and must * document whether or not they do support serialization. */ public abstract class Clock { /** * Obtains a clock that returns the current instant using the best available * system clock, converting to date and time using the UTC time-zone. *

* This clock, rather than {@link #systemDefaultZone()}, should be used when * you need the current instant without the date or time. *

* This clock is based on the best available system clock. * This may use {@link System#currentTimeMillis()}, or a higher resolution * clock if one is available. *

* Conversion from instant to date or time uses the {@link ZoneOffset#UTC UTC time-zone}. *

* The returned implementation is immutable, thread-safe and {@code Serializable}. * It is equivalent to {@code system(ZoneOffset.UTC)}. * * @return a clock that uses the best available system clock in the UTC zone, not null */ public static Clock systemUTC() { return new SystemClock(ZoneOffset.UTC); } /** * Obtains a clock that returns the current instant using the best available * system clock, converting to date and time using the default time-zone. *

* This clock is based on the best available system clock. * This may use {@link System#currentTimeMillis()}, or a higher resolution * clock if one is available. *

* Using this method hard codes a dependency to the default time-zone into your application. * It is recommended to avoid this and use a specific time-zone whenever possible. * The {@link #systemUTC() UTC clock} should be used when you need the current instant * without the date or time. *

* The returned implementation is immutable, thread-safe and {@code Serializable}. * It is equivalent to {@code system(ZoneId.systemDefault())}. * * @return a clock that uses the best available system clock in the default zone, not null * @see ZoneId#systemDefault() */ public static Clock systemDefaultZone() { return new SystemClock(ZoneId.systemDefault()); } /** * Obtains a clock that returns the current instant using best available * system clock. *

* This clock is based on the best available system clock. * This may use {@link System#currentTimeMillis()}, or a higher resolution * clock if one is available. *

* Conversion from instant to date or time uses the specified time-zone. *

* The returned implementation is immutable, thread-safe and {@code Serializable}. * * @param zone the time-zone to use to convert the instant to date-time, not null * @return a clock that uses the best available system clock in the specified zone, not null */ public static Clock system(ZoneId zone) { Jdk8Methods.requireNonNull(zone, "zone"); return new SystemClock(zone); } //------------------------------------------------------------------------- /** * Obtains a clock that returns the current instant ticking in whole seconds * using best available system clock. *

* This clock will always have the nano-of-second field set to zero. * This ensures that the visible time ticks in whole seconds. * The underlying clock is the best available system clock, equivalent to * using {@link #system(ZoneId)}. *

* Implementations may use a caching strategy for performance reasons. * As such, it is possible that the start of the second observed via this * clock will be later than that observed directly via the underlying clock. *

* The returned implementation is immutable, thread-safe and {@code Serializable}. * It is equivalent to {@code tick(system(zone), Duration.ofSeconds(1))}. * * @param zone the time-zone to use to convert the instant to date-time, not null * @return a clock that ticks in whole seconds using the specified zone, not null */ public static Clock tickSeconds(ZoneId zone) { return new TickClock(system(zone), NANOS_PER_SECOND); } /** * Obtains a clock that returns the current instant ticking in whole minutes * using best available system clock. *

* This clock will always have the nano-of-second and second-of-minute fields set to zero. * This ensures that the visible time ticks in whole minutes. * The underlying clock is the best available system clock, equivalent to * using {@link #system(ZoneId)}. *

* Implementations may use a caching strategy for performance reasons. * As such, it is possible that the start of the minute observed via this * clock will be later than that observed directly via the underlying clock. *

* The returned implementation is immutable, thread-safe and {@code Serializable}. * It is equivalent to {@code tick(system(zone), Duration.ofMinutes(1))}. * * @param zone the time-zone to use to convert the instant to date-time, not null * @return a clock that ticks in whole minutes using the specified zone, not null */ public static Clock tickMinutes(ZoneId zone) { return new TickClock(system(zone), NANOS_PER_MINUTE); } /** * Obtains a clock that returns instants from the specified clock truncated * to the nearest occurrence of the specified duration. *

* This clock will only tick as per the specified duration. Thus, if the duration * is half a second, the clock will return instants truncated to the half second. *

* The tick duration must be positive. If it has a part smaller than a whole * millisecond, then the whole duration must divide into one second without * leaving a remainder. All normal tick durations will match these criteria, * including any multiple of hours, minutes, seconds and milliseconds, and * sensible nanosecond durations, such as 20ns, 250,000ns and 500,000ns. *

* A duration of zero or one nanosecond would have no truncation effect. * Passing one of these will return the underlying clock. *

* Implementations may use a caching strategy for performance reasons. * As such, it is possible that the start of the requested duration observed * via this clock will be later than that observed directly via the underlying clock. *

* The returned implementation is immutable, thread-safe and {@code Serializable} * providing that the base clock is. * * @param baseClock the base clock to base the ticking clock on, not null * @param tickDuration the duration of each visible tick, not negative, not null * @return a clock that ticks in whole units of the duration, not null * @throws IllegalArgumentException if the duration is negative, or has a * part smaller than a whole millisecond such that the whole duration is not * divisible into one second * @throws ArithmeticException if the duration is too large to be represented as nanos */ public static Clock tick(Clock baseClock, Duration tickDuration) { Jdk8Methods.requireNonNull(baseClock, "baseClock"); Jdk8Methods.requireNonNull(tickDuration, "tickDuration"); if (tickDuration.isNegative()) { throw new IllegalArgumentException("Tick duration must not be negative"); } long tickNanos = tickDuration.toNanos(); if (tickNanos % 1000000 == 0) { // ok, no fraction of millisecond } else if (1000000000 % tickNanos == 0) { // ok, divides into one second without remainder } else { throw new IllegalArgumentException("Invalid tick duration"); } if (tickNanos <= 1) { return baseClock; } return new TickClock(baseClock, tickNanos); } //----------------------------------------------------------------------- /** * Obtains a clock that always returns the same instant. *

* This clock simply returns the specified instant. * As such, it is not a clock in the conventional sense. * The main use case for this is in testing, where the fixed clock ensures * tests are not dependent on the current clock. *

* The returned implementation is immutable, thread-safe and {@code Serializable}. * * @param fixedInstant the instant to use as the clock, not null * @param zone the time-zone to use to convert the instant to date-time, not null * @return a clock that always returns the same instant, not null */ public static Clock fixed(Instant fixedInstant, ZoneId zone) { Jdk8Methods.requireNonNull(fixedInstant, "fixedInstant"); Jdk8Methods.requireNonNull(zone, "zone"); return new FixedClock(fixedInstant, zone); } //------------------------------------------------------------------------- /** * Obtains a clock that returns instants from the specified clock with the * specified duration added *

* This clock wraps another clock, returning instants that are later by the * specified duration. If the duration is negative, the instants will be * earlier than the current date and time. * The main use case for this is to simulate running in the future or in the past. *

* A duration of zero would have no offsetting effect. * Passing zero will return the underlying clock. *

* The returned implementation is immutable, thread-safe and {@code Serializable} * providing that the base clock is. * * @param baseClock the base clock to add the duration to, not null * @param offsetDuration the duration to add, not null * @return a clock based on the base clock with the duration added, not null */ public static Clock offset(Clock baseClock, Duration offsetDuration) { Jdk8Methods.requireNonNull(baseClock, "baseClock"); Jdk8Methods.requireNonNull(offsetDuration, "offsetDuration"); if (offsetDuration.equals(Duration.ZERO)) { return baseClock; } return new OffsetClock(baseClock, offsetDuration); } //----------------------------------------------------------------------- /** * Constructor accessible by subclasses. */ protected Clock() { } //----------------------------------------------------------------------- /** * Gets the time-zone being used to create dates and times. *

* A clock will typically obtain the current instant and then convert that * to a date or time using a time-zone. This method returns the time-zone used. * * @return the time-zone being used to interpret instants, not null */ public abstract ZoneId getZone(); /** * Returns a copy of this clock with a different time-zone. *

* A clock will typically obtain the current instant and then convert that * to a date or time using a time-zone. This method returns a clock with * similar properties but using a different time-zone. * * @param zone the time-zone to change to, not null * @return a clock based on this clock with the specified time-zone, not null */ public abstract Clock withZone(ZoneId zone); //------------------------------------------------------------------------- /** * Gets the current millisecond instant of the clock. *

* This returns the millisecond-based instant, measured from 1970-01-01T00:00 UTC. * This is equivalent to the definition of {@link System#currentTimeMillis()}. *

* Most applications should avoid this method and use {@link Instant} to represent * an instant on the time-line rather than a raw millisecond value. * This method is provided to allow the use of the clock in high performance use cases * where the creation of an object would be unacceptable. * The default implementation currently calls {@link #instant()}. *

* * @return the current millisecond instant from this clock, measured from * the Java epoch of 1970-01-01T00:00 UTC, not null * @throws DateTimeException if the instant cannot be obtained, not thrown by most implementations */ public long millis() { return instant().toEpochMilli(); } /** * Gets the current instant of the clock. *

* This returns an instant representing the current instant as defined by the clock. * * @return the current instant from this clock, not null * @throws DateTimeException if the instant cannot be obtained, not thrown by most implementations */ public abstract Instant instant(); //----------------------------------------------------------------------- /** * Checks if this clock is equal to another clock. *

* Clocks must compare equal based on their state and behavior. * * @param obj the object to check, null returns false * @return true if this is equal to the other clock */ @Override public boolean equals(Object obj) { return super.equals(obj); } /** * A hash code for this clock. * * @return a suitable hash code */ @Override public int hashCode() { return super.hashCode(); } //----------------------------------------------------------------------- /** * Implementation of a clock that always returns the latest time from * {@link System#currentTimeMillis()}. */ static final class SystemClock extends Clock implements Serializable { private static final long serialVersionUID = 6740630888130243051L; private final ZoneId zone; SystemClock(ZoneId zone) { this.zone = zone; } @Override public ZoneId getZone() { return zone; } @Override public Clock withZone(ZoneId zone) { if (zone.equals(this.zone)) { // intentional NPE return this; } return new SystemClock(zone); } @Override public long millis() { return System.currentTimeMillis(); } @Override public Instant instant() { return Instant.ofEpochMilli(millis()); } @Override public boolean equals(Object obj) { if (obj instanceof SystemClock) { return zone.equals(((SystemClock) obj).zone); } return false; } @Override public int hashCode() { return zone.hashCode() + 1; } @Override public String toString() { return "SystemClock[" + zone + "]"; } } //----------------------------------------------------------------------- /** * Implementation of a clock that always returns the same instant. * This is typically used for testing. */ static final class FixedClock extends Clock implements Serializable { private static final long serialVersionUID = 7430389292664866958L; private final Instant instant; private final ZoneId zone; FixedClock(Instant fixedInstant, ZoneId zone) { this.instant = fixedInstant; this.zone = zone; } @Override public ZoneId getZone() { return zone; } @Override public Clock withZone(ZoneId zone) { if (zone.equals(this.zone)) { // intentional NPE return this; } return new FixedClock(instant, zone); } @Override public long millis() { return instant.toEpochMilli(); } @Override public Instant instant() { return instant; } @Override public boolean equals(Object obj) { if (obj instanceof FixedClock) { FixedClock other = (FixedClock) obj; return instant.equals(other.instant) && zone.equals(other.zone); } return false; } @Override public int hashCode() { return instant.hashCode() ^ zone.hashCode(); } @Override public String toString() { return "FixedClock[" + instant + "," + zone + "]"; } } //----------------------------------------------------------------------- /** * Implementation of a clock that adds an offset to an underlying clock. */ static final class OffsetClock extends Clock implements Serializable { private static final long serialVersionUID = 2007484719125426256L; private final Clock baseClock; private final Duration offset; OffsetClock(Clock baseClock, Duration offset) { this.baseClock = baseClock; this.offset = offset; } @Override public ZoneId getZone() { return baseClock.getZone(); } @Override public Clock withZone(ZoneId zone) { if (zone.equals(baseClock.getZone())) { // intentional NPE return this; } return new OffsetClock(baseClock.withZone(zone), offset); } @Override public long millis() { return Jdk8Methods.safeAdd(baseClock.millis(), offset.toMillis()); } @Override public Instant instant() { return baseClock.instant().plus(offset); } @Override public boolean equals(Object obj) { if (obj instanceof OffsetClock) { OffsetClock other = (OffsetClock) obj; return baseClock.equals(other.baseClock) && offset.equals(other.offset); } return false; } @Override public int hashCode() { return baseClock.hashCode() ^ offset.hashCode(); } @Override public String toString() { return "OffsetClock[" + baseClock + "," + offset + "]"; } } //----------------------------------------------------------------------- /** * Implementation of a clock that adds an offset to an underlying clock. */ static final class TickClock extends Clock implements Serializable { private static final long serialVersionUID = 6504659149906368850L; private final Clock baseClock; private final long tickNanos; TickClock(Clock baseClock, long tickNanos) { this.baseClock = baseClock; this.tickNanos = tickNanos; } @Override public ZoneId getZone() { return baseClock.getZone(); } @Override public Clock withZone(ZoneId zone) { if (zone.equals(baseClock.getZone())) { // intentional NPE return this; } return new TickClock(baseClock.withZone(zone), tickNanos); } @Override public long millis() { long millis = baseClock.millis(); return millis - Jdk8Methods.floorMod(millis, tickNanos / 1000000L); } @Override public Instant instant() { if ((tickNanos % 1000000) == 0) { long millis = baseClock.millis(); return Instant.ofEpochMilli(millis - Jdk8Methods.floorMod(millis, tickNanos / 1000000L)); } Instant instant = baseClock.instant(); long nanos = instant.getNano(); long adjust = Jdk8Methods.floorMod(nanos, tickNanos); return instant.minusNanos(adjust); } @Override public boolean equals(Object obj) { if (obj instanceof TickClock) { TickClock other = (TickClock) obj; return baseClock.equals(other.baseClock) && tickNanos == other.tickNanos; } return false; } @Override public int hashCode() { return baseClock.hashCode() ^ ((int) (tickNanos ^ (tickNanos >>> 32))); } @Override public String toString() { return "TickClock[" + baseClock + "," + Duration.ofNanos(tickNanos) + "]"; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy