All Downloads are FREE. Search and download functionalities are using the official Maven repository.

no.kodeworks.kvarg.util.PriorityBlockingDeque Maven / Gradle / Ivy

There is a newer version: 0.7
Show newest version
package no.kodeworks.kvarg.util;

import java.util.*;
import java.util.concurrent.BlockingDeque;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

/**
 * Copyright (c) 2007, Aviad Ben Dov
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * 1. Redistributioners of source code must retain the above copyright notice, this list
 * of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice, this
 * list of conditions and the following disclaimer in the documentation and/or other
 * materials provided with the distribution.
 * 3. Neither the name of Infomancers, Ltd. nor the names of its contributors may be
 * used to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 */


/**
 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
 * a navigable set.
 * 

*

The optional capacity bound constructor argument serves as a * way to prevent excessive expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. *

*

This class and its iterator implement all of the * optional methods of the {@link Collection} and {@link * Iterator} interfaces. *

* This code is loosely based on the {@linkplain java.util.concurrent.LinkedBlockingDeque linked blocking deque} code. * * @author Aviad Ben Dov * @param the type of elements held in this collection * @since 0.3 */ public class PriorityBlockingDeque extends AbstractQueue implements BlockingDeque, java.io.Serializable { /* * Implemented as a navigable set protected by a * single lock and using conditions to manage blocking. */ private final int capacity; private final LinkedList list; /** * Main lock guarding all access */ private final ReentrantLock lock = new ReentrantLock(); /** * Condition for waiting takes */ private final Condition notEmpty = lock.newCondition(); /** * Condition for waiting puts */ private final Condition notFull = lock.newCondition(); private Comparator comparator; /** * Creates a PriorityBlockingDeque with a capacity of * {@link Integer#MAX_VALUE}. */ public PriorityBlockingDeque() { this(null, Integer.MAX_VALUE); } /** * Creates a PriorityBlockingDeque with the given (fixed) capacity. * * @param capacity the capacity of this deque * @throws IllegalArgumentException if capacity is less than 1 */ public PriorityBlockingDeque(int capacity) { this(null, capacity); } public PriorityBlockingDeque(Comparator comparator, int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; this.list = new LinkedList(); this.comparator = comparator; } // Basic adding and removing operations, called only while holding lock /** * Adds e or returns false if full. * * @param e The element to add. * @return Whether adding was successful. */ private boolean innerAdd(E e) { if (list.size() >= capacity) return false; int insertionPoint = Collections.binarySearch(list, e, comparator); if (insertionPoint < 0) { // this means the key didn't exist, so the insertion point is negative minus 1. insertionPoint = -insertionPoint - 1; } list.add(insertionPoint, e); // Collections.sort(list, comparator); notEmpty.signal(); return true; } /** * Removes and returns first element, or null if empty. * * @return The removed element. */ private E innerRemoveFirst() { E f = list.pollFirst(); if (f == null) return null; notFull.signal(); return f; } /** * Removes and returns last element, or null if empty. * * @return The removed element. */ private E innerRemoveLast() { E l = list.pollLast(); if (l == null) return null; notFull.signal(); return l; } // BlockingDeque methods /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void addFirst(E e) { if (!offerFirst(e)) throw new IllegalStateException("Deque full"); } /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void addLast(E e) { if (!offerLast(e)) throw new IllegalStateException("Deque full"); } /** * @throws NullPointerException {@inheritDoc} */ public boolean offerFirst(E e) { if (e == null) throw new NullPointerException(); lock.lock(); try { return innerAdd(e); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} */ public boolean offerLast(E e) { if (e == null) throw new NullPointerException(); lock.lock(); try { return innerAdd(e); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void putFirst(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); lock.lock(); try { while (!innerAdd(e)) notFull.await(); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void putLast(E e) throws InterruptedException { if (e == null) throw new NullPointerException(); lock.lock(); try { while (!innerAdd(e)) notFull.await(); } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offerFirst(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (; ;) { if (innerAdd(e)) return true; if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } } finally { lock.unlock(); } } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offerLast(E e, long timeout, TimeUnit unit) throws InterruptedException { if (e == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (; ;) { if (innerAdd(e)) return true; if (nanos <= 0) return false; nanos = notFull.awaitNanos(nanos); } } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ public E removeFirst() { E x = pollFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** * @throws NoSuchElementException {@inheritDoc} */ public E removeLast() { E x = pollLast(); if (x == null) throw new NoSuchElementException(); return x; } public E pollFirst() { lock.lock(); try { return innerRemoveFirst(); } finally { lock.unlock(); } } public E pollLast() { lock.lock(); try { return innerRemoveLast(); } finally { lock.unlock(); } } public E takeFirst() throws InterruptedException { lock.lock(); try { E x; while ((x = innerRemoveFirst()) == null) notEmpty.await(); return x; } finally { lock.unlock(); } } public E takeLast() throws InterruptedException { lock.lock(); try { E x; while ((x = innerRemoveLast()) == null) notEmpty.await(); return x; } finally { lock.unlock(); } } public E pollFirst(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (; ;) { E x = innerRemoveFirst(); if (x != null) return x; if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } } finally { lock.unlock(); } } public E pollLast(long timeout, TimeUnit unit) throws InterruptedException { long nanos = unit.toNanos(timeout); lock.lockInterruptibly(); try { for (; ;) { E x = innerRemoveLast(); if (x != null) return x; if (nanos <= 0) return null; nanos = notEmpty.awaitNanos(nanos); } } finally { lock.unlock(); } } /** * @throws NoSuchElementException {@inheritDoc} */ public E getFirst() { E x = peekFirst(); if (x == null) throw new NoSuchElementException(); return x; } /** * @throws NoSuchElementException {@inheritDoc} */ public E getLast() { E x = peekLast(); if (x == null) throw new NoSuchElementException(); return x; } public E peekFirst() { lock.lock(); try { return list.size() == 0 ? null : list.peekFirst(); } finally { lock.unlock(); } } public E peekLast() { lock.lock(); try { return list.size() == 0 ? null : list.peekLast(); } finally { lock.unlock(); } } public boolean removeFirstOccurrence(Object o) { if (o == null) return false; lock.lock(); try { for (Iterator it = list.iterator(); it.hasNext();) { E e = it.next(); if (o.equals(e)) { it.remove(); return true; } } return false; } finally { lock.unlock(); } } public boolean removeLastOccurrence(Object o) { if (o == null) return false; lock.lock(); try { for (Iterator it = list.descendingIterator(); it.hasNext();) { E e = it.next(); if (o.equals(e)) { it.remove(); return true; } } return false; } finally { lock.unlock(); } } // BlockingQueue methods /** * Inserts the specified element to the deque unless it would * violate capacity restrictions. When using a capacity-restricted deque, * it is generally preferable to use method {@link #offer(Object) offer}. *

*

This method is equivalent to {@link #addLast}. * * @throws IllegalStateException if the element cannot be added at this * time due to capacity restrictions * @throws NullPointerException if the specified element is null */ @Override public boolean add(E e) { addLast(e); return true; } /** * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { return offerLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public void put(E e) throws InterruptedException { putLast(e); } /** * @throws NullPointerException {@inheritDoc} * @throws InterruptedException {@inheritDoc} */ public boolean offer(E e, long timeout, TimeUnit unit) throws InterruptedException { return offerLast(e, timeout, unit); } /** * Retrieves and removes the head of the queue represented by this deque. * This method differs from {@link #poll poll} only in that it throws an * exception if this deque is empty. *

*

This method is equivalent to {@link #removeFirst() removeFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E remove() { return removeFirst(); } public E poll() { return pollFirst(); } public E take() throws InterruptedException { return takeFirst(); } public E poll(long timeout, TimeUnit unit) throws InterruptedException { return pollFirst(timeout, unit); } /** * Retrieves, but does not remove, the head of the queue represented by * this deque. This method differs from {@link #peek peek} only in that * it throws an exception if this deque is empty. *

*

This method is equivalent to {@link #getFirst() getFirst}. * * @return the head of the queue represented by this deque * @throws NoSuchElementException if this deque is empty */ @Override public E element() { return getFirst(); } public E peek() { return peekFirst(); } /** * Returns the number of additional elements that this deque can ideally * (in the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this deque * less the current size of this deque. *

*

Note that you cannot always tell if an attempt to insert * an element will succeed by inspecting remainingCapacity * because it may be the case that another thread is about to * insert or remove an element. */ public int remainingCapacity() { lock.lock(); try { return capacity - list.size(); } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); lock.lock(); try { for (E e : list) { c.add(e); } int n = list.size(); list.clear(); notFull.signalAll(); return n; } finally { lock.unlock(); } } /** * @throws UnsupportedOperationException {@inheritDoc} * @throws ClassCastException {@inheritDoc} * @throws NullPointerException {@inheritDoc} * @throws IllegalArgumentException {@inheritDoc} */ public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); lock.lock(); try { int n = 0; for (Iterator it = list.iterator(); n < maxElements && it.hasNext();) { E e = it.next(); c.add(e); it.remove(); ++n; } notFull.signalAll(); return n; } finally { lock.unlock(); } } // Stack methods /** * @throws IllegalStateException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public void push(E e) { addFirst(e); } /** * @throws NoSuchElementException {@inheritDoc} */ public E pop() { return removeFirst(); } // Collection methods /** * Removes the first occurrence of the specified element from this deque. * If the deque does not contain the element, it is unchanged. * More formally, removes the first element e such that * o.equals(e) (if such an element exists). * Returns true if this deque contained the specified element * (or equivalently, if this deque changed as a result of the call). *

*

This method is equivalent to * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}. * * @param o element to be removed from this deque, if present * @return true if this deque changed as a result of the call */ @Override public boolean remove(Object o) { return removeFirstOccurrence(o); } /** * Returns the number of elements in this deque. * * @return the number of elements in this deque */ @Override public int size() { lock.lock(); try { return list.size(); } finally { lock.unlock(); } } /** * Returns true if this deque contains the specified element. * More formally, returns true if and only if this deque contains * at least one element e such that o.equals(e). * * @param o object to be checked for containment in this deque * @return true if this deque contains the specified element */ @Override public boolean contains(Object o) { if (o == null) return false; lock.lock(); try { return list.contains(o); } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence (from first to last element). *

*

The returned array will be "safe" in that no references to it are * maintained by this deque. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. *

*

This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this deque */ @Override public Object[] toArray() { lock.lock(); try { return list.toArray(); } finally { lock.unlock(); } } /** * Returns an array containing all of the elements in this deque, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the deque fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this deque. *

*

If this deque fits in the specified array with room to spare * (i.e., the array has more elements than this deque), the element in * the array immediately following the end of the deque is set to * null. *

*

Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. *

*

Suppose x is a deque known to contain only strings. * The following code can be used to dump the deque into a newly * allocated array of String: *

*

     *     String[] y = x.toArray(new String[0]);
*

* Note that toArray(new Object[0]) is identical in function to * toArray(). * * @param a the array into which the elements of the deque are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this deque * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this deque * @throws NullPointerException if the specified array is null */ @Override public T[] toArray(T[] a) { lock.lock(); try { return list.toArray(a); } finally { lock.unlock(); } } @Override public String toString() { lock.lock(); try { return super.toString(); } finally { lock.unlock(); } } /** * Atomically removes all of the elements from this deque. * The deque will be empty after this call returns. */ @Override public void clear() { lock.lock(); try { list.clear(); notFull.signalAll(); } finally { lock.unlock(); } } @Override public Iterator iterator() { return list.iterator(); } public Iterator descendingIterator() { return list.descendingIterator(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy