org.opencv.ml.CvNormalBayesClassifier Maven / Gradle / Ivy
Show all versions of opencv Show documentation
//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.ml;
import org.opencv.core.Mat;
// C++: class CvNormalBayesClassifier
/**
* Bayes classifier for normally distributed data.
*
* @see org.opencv.ml.CvNormalBayesClassifier : public CvStatModel
*/
public class CvNormalBayesClassifier extends CvStatModel {
protected CvNormalBayesClassifier(long addr) { super(addr); }
//
// C++: CvNormalBayesClassifier::CvNormalBayesClassifier()
//
/**
* Default and training constructors.
*
* The constructors follow conventions of "CvStatModel.CvStatModel". See
* "CvStatModel.train" for parameters descriptions.
*
* @see org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier
*/
public CvNormalBayesClassifier()
{
super( CvNormalBayesClassifier_0() );
return;
}
//
// C++: CvNormalBayesClassifier::CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat())
//
/**
* Default and training constructors.
*
* The constructors follow conventions of "CvStatModel.CvStatModel". See
* "CvStatModel.train" for parameters descriptions.
*
* @param trainData a trainData
* @param responses a responses
* @param varIdx a varIdx
* @param sampleIdx a sampleIdx
*
* @see org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier
*/
public CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx, Mat sampleIdx)
{
super( CvNormalBayesClassifier_1(trainData.nativeObj, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj) );
return;
}
/**
* Default and training constructors.
*
* The constructors follow conventions of "CvStatModel.CvStatModel". See
* "CvStatModel.train" for parameters descriptions.
*
* @param trainData a trainData
* @param responses a responses
*
* @see org.opencv.ml.CvNormalBayesClassifier.CvNormalBayesClassifier
*/
public CvNormalBayesClassifier(Mat trainData, Mat responses)
{
super( CvNormalBayesClassifier_2(trainData.nativeObj, responses.nativeObj) );
return;
}
//
// C++: void CvNormalBayesClassifier::clear()
//
public void clear()
{
clear_0(nativeObj);
return;
}
//
// C++: float CvNormalBayesClassifier::predict(Mat samples, Mat* results = 0)
//
/**
* Predicts the response for sample(s).
*
* The method estimates the most probable classes for input vectors. Input
* vectors (one or more) are stored as rows of the matrix samples
.
* In case of multiple input vectors, there should be one output vector
* results
. The predicted class for a single input vector is
* returned by the method.
*
* The function is parallelized with the TBB library.
*
* @param samples a samples
* @param results a results
*
* @see org.opencv.ml.CvNormalBayesClassifier.predict
*/
public float predict(Mat samples, Mat results)
{
float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj);
return retVal;
}
/**
* Predicts the response for sample(s).
*
* The method estimates the most probable classes for input vectors. Input
* vectors (one or more) are stored as rows of the matrix samples
.
* In case of multiple input vectors, there should be one output vector
* results
. The predicted class for a single input vector is
* returned by the method.
*
* The function is parallelized with the TBB library.
*
* @param samples a samples
*
* @see org.opencv.ml.CvNormalBayesClassifier.predict
*/
public float predict(Mat samples)
{
float retVal = predict_1(nativeObj, samples.nativeObj);
return retVal;
}
//
// C++: bool CvNormalBayesClassifier::train(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), bool update = false)
//
/**
* Trains the model.
*
* The method trains the Normal Bayes classifier. It follows the conventions of
* the generic "CvStatModel.train" approach with the following limitations:
*
* - Only
CV_ROW_SAMPLE
data layout is supported.
* - Input variables are all ordered.
*
- Output variable is categorical, which means that elements of
*
responses
must be integer numbers, though the vector may have
* the CV_32FC1
type.
* - Missing measurements are not supported.
*
*
* @param trainData a trainData
* @param responses a responses
* @param varIdx a varIdx
* @param sampleIdx a sampleIdx
* @param update Identifies whether the model should be trained from scratch
* (update=false
) or should be updated using the new training data
* (update=true
).
*
* @see org.opencv.ml.CvNormalBayesClassifier.train
*/
public boolean train(Mat trainData, Mat responses, Mat varIdx, Mat sampleIdx, boolean update)
{
boolean retVal = train_0(nativeObj, trainData.nativeObj, responses.nativeObj, varIdx.nativeObj, sampleIdx.nativeObj, update);
return retVal;
}
/**
* Trains the model.
*
* The method trains the Normal Bayes classifier. It follows the conventions of
* the generic "CvStatModel.train" approach with the following limitations:
*
* - Only
CV_ROW_SAMPLE
data layout is supported.
* - Input variables are all ordered.
*
- Output variable is categorical, which means that elements of
*
responses
must be integer numbers, though the vector may have
* the CV_32FC1
type.
* - Missing measurements are not supported.
*
*
* @param trainData a trainData
* @param responses a responses
*
* @see org.opencv.ml.CvNormalBayesClassifier.train
*/
public boolean train(Mat trainData, Mat responses)
{
boolean retVal = train_1(nativeObj, trainData.nativeObj, responses.nativeObj);
return retVal;
}
@Override
protected void finalize() throws Throwable {
delete(nativeObj);
}
// C++: CvNormalBayesClassifier::CvNormalBayesClassifier()
private static native long CvNormalBayesClassifier_0();
// C++: CvNormalBayesClassifier::CvNormalBayesClassifier(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat())
private static native long CvNormalBayesClassifier_1(long trainData_nativeObj, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj);
private static native long CvNormalBayesClassifier_2(long trainData_nativeObj, long responses_nativeObj);
// C++: void CvNormalBayesClassifier::clear()
private static native void clear_0(long nativeObj);
// C++: float CvNormalBayesClassifier::predict(Mat samples, Mat* results = 0)
private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj);
private static native float predict_1(long nativeObj, long samples_nativeObj);
// C++: bool CvNormalBayesClassifier::train(Mat trainData, Mat responses, Mat varIdx = cv::Mat(), Mat sampleIdx = cv::Mat(), bool update = false)
private static native boolean train_0(long nativeObj, long trainData_nativeObj, long responses_nativeObj, long varIdx_nativeObj, long sampleIdx_nativeObj, boolean update);
private static native boolean train_1(long nativeObj, long trainData_nativeObj, long responses_nativeObj);
// native support for java finalize()
private static native void delete(long nativeObj);
}