All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.opencv.features2d.GenericDescriptorMatcher Maven / Gradle / Ivy

The newest version!

//
// This file is auto-generated. Please don't modify it!
//
package org.opencv.features2d;

import java.lang.String;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.utils.Converters;

// C++: class javaGenericDescriptorMatcher
/**
 * 

Abstract interface for extracting and matching a keypoint descriptor. There * are also "DescriptorExtractor" and "DescriptorMatcher" for these purposes but * their interfaces are intended for descriptors represented as vectors in a * multidimensional space. GenericDescriptorMatcher is a more * generic interface for descriptors. DescriptorMatcher and * GenericDescriptorMatcher have two groups of match methods: for * matching keypoints of an image with another image or with an image set.

* *

class GenericDescriptorMatcher

* *

// C++ code:

* * *

public:

* *

GenericDescriptorMatcher();

* *

virtual ~GenericDescriptorMatcher();

* *

virtual void add(const vector& images,

* *

vector >& keypoints);

* *

const vector& getTrainImages() const;

* *

const vector >& getTrainKeypoints() const;

* *

virtual void clear();

* *

virtual void train() = 0;

* *

virtual bool isMaskSupported() = 0;

* *

void classify(const Mat& queryImage,

* *

vector& queryKeypoints,

* *

const Mat& trainImage,

* *

vector& trainKeypoints) const;

* *

void classify(const Mat& queryImage,

* *

vector& queryKeypoints);

* *

/ *

*
    *
  • Group of methods to match keypoints from an image pair. *
  • / *
* *

void match(const Mat& queryImage, vector& queryKeypoints,

* *

const Mat& trainImage, vector& trainKeypoints,

* *

vector& matches, const Mat& mask=Mat()) const;

* *

void knnMatch(const Mat& queryImage, vector& queryKeypoints,

* *

const Mat& trainImage, vector& trainKeypoints,

* *

vector >& matches, int k,

* *

const Mat& mask=Mat(), bool compactResult=false) const;

* *

void radiusMatch(const Mat& queryImage, vector& queryKeypoints,

* *

const Mat& trainImage, vector& trainKeypoints,

* *

vector >& matches, float maxDistance,

* *

const Mat& mask=Mat(), bool compactResult=false) const;

* *

/ *

*
    *
  • Group of methods to match keypoints from one image to an image set. *
  • / *
* *

void match(const Mat& queryImage, vector& queryKeypoints,

* *

vector& matches, const vector& masks=vector());

* *

void knnMatch(const Mat& queryImage, vector& queryKeypoints,

* *

vector >& matches, int k,

* *

const vector& masks=vector(), bool compactResult=false);

* *

void radiusMatch(const Mat& queryImage, vector& queryKeypoints,

* *

vector >& matches, float maxDistance,

* *

const vector& masks=vector(), bool compactResult=false);

* *

virtual void read(const FileNode&);

* *

virtual void write(FileStorage&) const;

* *

virtual Ptr clone(bool emptyTrainData=false) const * = 0;

* *

protected:...

* *

};

* * @see org.opencv.features2d.GenericDescriptorMatcher */ public class GenericDescriptorMatcher { protected final long nativeObj; protected GenericDescriptorMatcher(long addr) { nativeObj = addr; } public static final int ONEWAY = 1, FERN = 2; // // C++: void javaGenericDescriptorMatcher::add(vector_Mat images, vector_vector_KeyPoint keypoints) // /** *

Adds images and their keypoints to the training collection stored in the * class instance.

* * @param images Image collection. * @param keypoints Point collection. It is assumed that keypoints[i] * are keypoints detected in the image images[i]. * * @see org.opencv.features2d.GenericDescriptorMatcher.add */ public void add(List images, List keypoints) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List keypoints_tmplm = new ArrayList((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); add_0(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj); return; } // // C++: void javaGenericDescriptorMatcher::classify(Mat queryImage, vector_KeyPoint& queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints) // /** *

Classifies keypoints from a query set.

* *

The method classifies each keypoint from a query set. The first variant of * the method takes a train image and its keypoints as an input argument. The * second variant uses the internally stored training collection that can be * built using the GenericDescriptorMatcher.add method.

* *

The methods do the following:

*
    *
  • Call the GenericDescriptorMatcher.match method to find * correspondence between the query set and the training set. *
  • Set the class_id field of each keypoint from the query * set to class_id of the corresponding keypoint from the training * set. *
* * @param queryImage Query image. * @param queryKeypoints Keypoints from a query image. * @param trainImage Train image. * @param trainKeypoints Keypoints from a train image. * * @see org.opencv.features2d.GenericDescriptorMatcher.classify */ public void classify(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; classify_0(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj); return; } // // C++: void javaGenericDescriptorMatcher::classify(Mat queryImage, vector_KeyPoint& queryKeypoints) // /** *

Classifies keypoints from a query set.

* *

The method classifies each keypoint from a query set. The first variant of * the method takes a train image and its keypoints as an input argument. The * second variant uses the internally stored training collection that can be * built using the GenericDescriptorMatcher.add method.

* *

The methods do the following:

*
    *
  • Call the GenericDescriptorMatcher.match method to find * correspondence between the query set and the training set. *
  • Set the class_id field of each keypoint from the query * set to class_id of the corresponding keypoint from the training * set. *
* * @param queryImage Query image. * @param queryKeypoints Keypoints from a query image. * * @see org.opencv.features2d.GenericDescriptorMatcher.classify */ public void classify(Mat queryImage, MatOfKeyPoint queryKeypoints) { Mat queryKeypoints_mat = queryKeypoints; classify_1(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj); return; } // // C++: void javaGenericDescriptorMatcher::clear() // /** *

Clears a train collection (images and keypoints).

* * @see org.opencv.features2d.GenericDescriptorMatcher.clear */ public void clear() { clear_0(nativeObj); return; } // // C++: javaGenericDescriptorMatcher* javaGenericDescriptorMatcher::jclone(bool emptyTrainData = false) // public GenericDescriptorMatcher clone(boolean emptyTrainData) { GenericDescriptorMatcher retVal = new GenericDescriptorMatcher(clone_0(nativeObj, emptyTrainData)); return retVal; } public GenericDescriptorMatcher clone() { GenericDescriptorMatcher retVal = new GenericDescriptorMatcher(clone_1(nativeObj)); return retVal; } // // C++: static javaGenericDescriptorMatcher* javaGenericDescriptorMatcher::create(int matcherType) // public static GenericDescriptorMatcher create(int matcherType) { GenericDescriptorMatcher retVal = new GenericDescriptorMatcher(create_0(matcherType)); return retVal; } // // C++: bool javaGenericDescriptorMatcher::empty() // public boolean empty() { boolean retVal = empty_0(nativeObj); return retVal; } // // C++: vector_Mat javaGenericDescriptorMatcher::getTrainImages() // /** *

Returns a train image collection.

* * @see org.opencv.features2d.GenericDescriptorMatcher.getTrainImages */ public List getTrainImages() { List retVal = new ArrayList(); Mat retValMat = new Mat(getTrainImages_0(nativeObj)); Converters.Mat_to_vector_Mat(retValMat, retVal); return retVal; } // // C++: vector_vector_KeyPoint javaGenericDescriptorMatcher::getTrainKeypoints() // /** *

Returns a train keypoints collection.

* * @see org.opencv.features2d.GenericDescriptorMatcher.getTrainKeypoints */ public List getTrainKeypoints() { List retVal = new ArrayList(); Mat retValMat = new Mat(getTrainKeypoints_0(nativeObj)); Converters.Mat_to_vector_vector_KeyPoint(retValMat, retVal); return retVal; } // // C++: bool javaGenericDescriptorMatcher::isMaskSupported() // /** *

Returns true if a generic descriptor matcher supports masking * permissible matches.

* * @see org.opencv.features2d.GenericDescriptorMatcher.isMaskSupported */ public boolean isMaskSupported() { boolean retVal = isMaskSupported_0(nativeObj); return retVal; } // // C++: void javaGenericDescriptorMatcher::knnMatch(Mat queryImage, vector_KeyPoint queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints, vector_vector_DMatch& matches, int k, Mat mask = Mat(), bool compactResult = false) // /** *

Finds the k best matches for each query keypoint.

* *

The methods are extended variants of GenericDescriptorMatch.match. * The parameters are similar, and the semantics is similar to DescriptorMatcher.knnMatch. * But this class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param trainImage a trainImage * @param trainKeypoints a trainKeypoints * @param matches a matches * @param k a k * @param mask a mask * @param compactResult a compactResult * * @see org.opencv.features2d.GenericDescriptorMatcher.knnMatch */ public void knnMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints, List matches, int k, Mat mask, boolean compactResult) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; Mat matches_mat = new Mat(); knnMatch_0(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj, matches_mat.nativeObj, k, mask.nativeObj, compactResult); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } /** *

Finds the k best matches for each query keypoint.

* *

The methods are extended variants of GenericDescriptorMatch.match. * The parameters are similar, and the semantics is similar to DescriptorMatcher.knnMatch. * But this class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param trainImage a trainImage * @param trainKeypoints a trainKeypoints * @param matches a matches * @param k a k * * @see org.opencv.features2d.GenericDescriptorMatcher.knnMatch */ public void knnMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints, List matches, int k) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; Mat matches_mat = new Mat(); knnMatch_1(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj, matches_mat.nativeObj, k); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } // // C++: void javaGenericDescriptorMatcher::knnMatch(Mat queryImage, vector_KeyPoint queryKeypoints, vector_vector_DMatch& matches, int k, vector_Mat masks = vector(), bool compactResult = false) // /** *

Finds the k best matches for each query keypoint.

* *

The methods are extended variants of GenericDescriptorMatch.match. * The parameters are similar, and the semantics is similar to DescriptorMatcher.knnMatch. * But this class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param matches a matches * @param k a k * @param masks a masks * @param compactResult a compactResult * * @see org.opencv.features2d.GenericDescriptorMatcher.knnMatch */ public void knnMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, List matches, int k, List masks, boolean compactResult) { Mat queryKeypoints_mat = queryKeypoints; Mat matches_mat = new Mat(); Mat masks_mat = Converters.vector_Mat_to_Mat(masks); knnMatch_2(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, matches_mat.nativeObj, k, masks_mat.nativeObj, compactResult); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } /** *

Finds the k best matches for each query keypoint.

* *

The methods are extended variants of GenericDescriptorMatch.match. * The parameters are similar, and the semantics is similar to DescriptorMatcher.knnMatch. * But this class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param matches a matches * @param k a k * * @see org.opencv.features2d.GenericDescriptorMatcher.knnMatch */ public void knnMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, List matches, int k) { Mat queryKeypoints_mat = queryKeypoints; Mat matches_mat = new Mat(); knnMatch_3(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, matches_mat.nativeObj, k); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } // // C++: void javaGenericDescriptorMatcher::match(Mat queryImage, vector_KeyPoint queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints, vector_DMatch& matches, Mat mask = Mat()) // /** *

Finds the best match in the training set for each keypoint from the query * set.

* *

The methods find the best match for each query keypoint. In the first variant * of the method, a train image and its keypoints are the input arguments. In * the second variant, query keypoints are matched to the internally stored * training collection that can be built using the GenericDescriptorMatcher.add * method. Optional mask (or masks) can be passed to specify which query and * training descriptors can be matched. Namely, queryKeypoints[i] * can be matched with trainKeypoints[j] only if mask.at(i,j) * is non-zero.

* * @param queryImage Query image. * @param queryKeypoints Keypoints detected in queryImage. * @param trainImage Train image. It is not added to a train image collection * stored in the class object. * @param trainKeypoints Keypoints detected in trainImage. They are * not added to a train points collection stored in the class object. * @param matches Matches. If a query descriptor (keypoint) is masked out in * mask, match is added for this descriptor. So, matches * size may be smaller than the query keypoints count. * @param mask Mask specifying permissible matches between an input query and * train keypoints. * * @see org.opencv.features2d.GenericDescriptorMatcher.match */ public void match(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints, MatOfDMatch matches, Mat mask) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; Mat matches_mat = matches; match_0(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj, matches_mat.nativeObj, mask.nativeObj); return; } /** *

Finds the best match in the training set for each keypoint from the query * set.

* *

The methods find the best match for each query keypoint. In the first variant * of the method, a train image and its keypoints are the input arguments. In * the second variant, query keypoints are matched to the internally stored * training collection that can be built using the GenericDescriptorMatcher.add * method. Optional mask (or masks) can be passed to specify which query and * training descriptors can be matched. Namely, queryKeypoints[i] * can be matched with trainKeypoints[j] only if mask.at(i,j) * is non-zero.

* * @param queryImage Query image. * @param queryKeypoints Keypoints detected in queryImage. * @param trainImage Train image. It is not added to a train image collection * stored in the class object. * @param trainKeypoints Keypoints detected in trainImage. They are * not added to a train points collection stored in the class object. * @param matches Matches. If a query descriptor (keypoint) is masked out in * mask, match is added for this descriptor. So, matches * size may be smaller than the query keypoints count. * * @see org.opencv.features2d.GenericDescriptorMatcher.match */ public void match(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints, MatOfDMatch matches) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; Mat matches_mat = matches; match_1(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj, matches_mat.nativeObj); return; } // // C++: void javaGenericDescriptorMatcher::match(Mat queryImage, vector_KeyPoint queryKeypoints, vector_DMatch& matches, vector_Mat masks = vector()) // /** *

Finds the best match in the training set for each keypoint from the query * set.

* *

The methods find the best match for each query keypoint. In the first variant * of the method, a train image and its keypoints are the input arguments. In * the second variant, query keypoints are matched to the internally stored * training collection that can be built using the GenericDescriptorMatcher.add * method. Optional mask (or masks) can be passed to specify which query and * training descriptors can be matched. Namely, queryKeypoints[i] * can be matched with trainKeypoints[j] only if mask.at(i,j) * is non-zero.

* * @param queryImage Query image. * @param queryKeypoints Keypoints detected in queryImage. * @param matches Matches. If a query descriptor (keypoint) is masked out in * mask, match is added for this descriptor. So, matches * size may be smaller than the query keypoints count. * @param masks Set of masks. Each masks[i] specifies permissible * matches between input query keypoints and stored train keypoints from the * i-th image. * * @see org.opencv.features2d.GenericDescriptorMatcher.match */ public void match(Mat queryImage, MatOfKeyPoint queryKeypoints, MatOfDMatch matches, List masks) { Mat queryKeypoints_mat = queryKeypoints; Mat matches_mat = matches; Mat masks_mat = Converters.vector_Mat_to_Mat(masks); match_2(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, matches_mat.nativeObj, masks_mat.nativeObj); return; } /** *

Finds the best match in the training set for each keypoint from the query * set.

* *

The methods find the best match for each query keypoint. In the first variant * of the method, a train image and its keypoints are the input arguments. In * the second variant, query keypoints are matched to the internally stored * training collection that can be built using the GenericDescriptorMatcher.add * method. Optional mask (or masks) can be passed to specify which query and * training descriptors can be matched. Namely, queryKeypoints[i] * can be matched with trainKeypoints[j] only if mask.at(i,j) * is non-zero.

* * @param queryImage Query image. * @param queryKeypoints Keypoints detected in queryImage. * @param matches Matches. If a query descriptor (keypoint) is masked out in * mask, match is added for this descriptor. So, matches * size may be smaller than the query keypoints count. * * @see org.opencv.features2d.GenericDescriptorMatcher.match */ public void match(Mat queryImage, MatOfKeyPoint queryKeypoints, MatOfDMatch matches) { Mat queryKeypoints_mat = queryKeypoints; Mat matches_mat = matches; match_3(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, matches_mat.nativeObj); return; } // // C++: void javaGenericDescriptorMatcher::radiusMatch(Mat queryImage, vector_KeyPoint queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints, vector_vector_DMatch& matches, float maxDistance, Mat mask = Mat(), bool compactResult = false) // /** *

For each query keypoint, finds the training keypoints not farther than the * specified distance.

* *

The methods are similar to DescriptorMatcher.radius. But this * class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param trainImage a trainImage * @param trainKeypoints a trainKeypoints * @param matches a matches * @param maxDistance a maxDistance * @param mask a mask * @param compactResult a compactResult * * @see org.opencv.features2d.GenericDescriptorMatcher.radiusMatch */ public void radiusMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints, List matches, float maxDistance, Mat mask, boolean compactResult) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; Mat matches_mat = new Mat(); radiusMatch_0(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj, matches_mat.nativeObj, maxDistance, mask.nativeObj, compactResult); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } /** *

For each query keypoint, finds the training keypoints not farther than the * specified distance.

* *

The methods are similar to DescriptorMatcher.radius. But this * class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param trainImage a trainImage * @param trainKeypoints a trainKeypoints * @param matches a matches * @param maxDistance a maxDistance * * @see org.opencv.features2d.GenericDescriptorMatcher.radiusMatch */ public void radiusMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, Mat trainImage, MatOfKeyPoint trainKeypoints, List matches, float maxDistance) { Mat queryKeypoints_mat = queryKeypoints; Mat trainKeypoints_mat = trainKeypoints; Mat matches_mat = new Mat(); radiusMatch_1(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, trainImage.nativeObj, trainKeypoints_mat.nativeObj, matches_mat.nativeObj, maxDistance); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } // // C++: void javaGenericDescriptorMatcher::radiusMatch(Mat queryImage, vector_KeyPoint queryKeypoints, vector_vector_DMatch& matches, float maxDistance, vector_Mat masks = vector(), bool compactResult = false) // /** *

For each query keypoint, finds the training keypoints not farther than the * specified distance.

* *

The methods are similar to DescriptorMatcher.radius. But this * class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param matches a matches * @param maxDistance a maxDistance * @param masks a masks * @param compactResult a compactResult * * @see org.opencv.features2d.GenericDescriptorMatcher.radiusMatch */ public void radiusMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, List matches, float maxDistance, List masks, boolean compactResult) { Mat queryKeypoints_mat = queryKeypoints; Mat matches_mat = new Mat(); Mat masks_mat = Converters.vector_Mat_to_Mat(masks); radiusMatch_2(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, matches_mat.nativeObj, maxDistance, masks_mat.nativeObj, compactResult); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } /** *

For each query keypoint, finds the training keypoints not farther than the * specified distance.

* *

The methods are similar to DescriptorMatcher.radius. But this * class does not require explicitly computed keypoint descriptors.

* * @param queryImage a queryImage * @param queryKeypoints a queryKeypoints * @param matches a matches * @param maxDistance a maxDistance * * @see org.opencv.features2d.GenericDescriptorMatcher.radiusMatch */ public void radiusMatch(Mat queryImage, MatOfKeyPoint queryKeypoints, List matches, float maxDistance) { Mat queryKeypoints_mat = queryKeypoints; Mat matches_mat = new Mat(); radiusMatch_3(nativeObj, queryImage.nativeObj, queryKeypoints_mat.nativeObj, matches_mat.nativeObj, maxDistance); Converters.Mat_to_vector_vector_DMatch(matches_mat, matches); return; } // // C++: void javaGenericDescriptorMatcher::read(string fileName) // /** *

Reads a matcher object from a file node.

* * @param fileName a fileName * * @see org.opencv.features2d.GenericDescriptorMatcher.read */ public void read(String fileName) { read_0(nativeObj, fileName); return; } // // C++: void javaGenericDescriptorMatcher::train() // /** *

Trains descriptor matcher

* *

Prepares descriptor matcher, for example, creates a tree-based structure, to * extract descriptors or to optimize descriptors matching.

* * @see org.opencv.features2d.GenericDescriptorMatcher.train */ public void train() { train_0(nativeObj); return; } // // C++: void javaGenericDescriptorMatcher::write(string fileName) // /** *

Writes a match object to a file storage.

* * @param fileName a fileName * * @see org.opencv.features2d.GenericDescriptorMatcher.write */ public void write(String fileName) { write_0(nativeObj, fileName); return; } @Override protected void finalize() throws Throwable { delete(nativeObj); } // C++: void javaGenericDescriptorMatcher::add(vector_Mat images, vector_vector_KeyPoint keypoints) private static native void add_0(long nativeObj, long images_mat_nativeObj, long keypoints_mat_nativeObj); // C++: void javaGenericDescriptorMatcher::classify(Mat queryImage, vector_KeyPoint& queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints) private static native void classify_0(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj); // C++: void javaGenericDescriptorMatcher::classify(Mat queryImage, vector_KeyPoint& queryKeypoints) private static native void classify_1(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj); // C++: void javaGenericDescriptorMatcher::clear() private static native void clear_0(long nativeObj); // C++: javaGenericDescriptorMatcher* javaGenericDescriptorMatcher::jclone(bool emptyTrainData = false) private static native long clone_0(long nativeObj, boolean emptyTrainData); private static native long clone_1(long nativeObj); // C++: static javaGenericDescriptorMatcher* javaGenericDescriptorMatcher::create(int matcherType) private static native long create_0(int matcherType); // C++: bool javaGenericDescriptorMatcher::empty() private static native boolean empty_0(long nativeObj); // C++: vector_Mat javaGenericDescriptorMatcher::getTrainImages() private static native long getTrainImages_0(long nativeObj); // C++: vector_vector_KeyPoint javaGenericDescriptorMatcher::getTrainKeypoints() private static native long getTrainKeypoints_0(long nativeObj); // C++: bool javaGenericDescriptorMatcher::isMaskSupported() private static native boolean isMaskSupported_0(long nativeObj); // C++: void javaGenericDescriptorMatcher::knnMatch(Mat queryImage, vector_KeyPoint queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints, vector_vector_DMatch& matches, int k, Mat mask = Mat(), bool compactResult = false) private static native void knnMatch_0(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj, long matches_mat_nativeObj, int k, long mask_nativeObj, boolean compactResult); private static native void knnMatch_1(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj, long matches_mat_nativeObj, int k); // C++: void javaGenericDescriptorMatcher::knnMatch(Mat queryImage, vector_KeyPoint queryKeypoints, vector_vector_DMatch& matches, int k, vector_Mat masks = vector(), bool compactResult = false) private static native void knnMatch_2(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long matches_mat_nativeObj, int k, long masks_mat_nativeObj, boolean compactResult); private static native void knnMatch_3(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long matches_mat_nativeObj, int k); // C++: void javaGenericDescriptorMatcher::match(Mat queryImage, vector_KeyPoint queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints, vector_DMatch& matches, Mat mask = Mat()) private static native void match_0(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj, long matches_mat_nativeObj, long mask_nativeObj); private static native void match_1(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj, long matches_mat_nativeObj); // C++: void javaGenericDescriptorMatcher::match(Mat queryImage, vector_KeyPoint queryKeypoints, vector_DMatch& matches, vector_Mat masks = vector()) private static native void match_2(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long matches_mat_nativeObj, long masks_mat_nativeObj); private static native void match_3(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long matches_mat_nativeObj); // C++: void javaGenericDescriptorMatcher::radiusMatch(Mat queryImage, vector_KeyPoint queryKeypoints, Mat trainImage, vector_KeyPoint trainKeypoints, vector_vector_DMatch& matches, float maxDistance, Mat mask = Mat(), bool compactResult = false) private static native void radiusMatch_0(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj, long matches_mat_nativeObj, float maxDistance, long mask_nativeObj, boolean compactResult); private static native void radiusMatch_1(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long trainImage_nativeObj, long trainKeypoints_mat_nativeObj, long matches_mat_nativeObj, float maxDistance); // C++: void javaGenericDescriptorMatcher::radiusMatch(Mat queryImage, vector_KeyPoint queryKeypoints, vector_vector_DMatch& matches, float maxDistance, vector_Mat masks = vector(), bool compactResult = false) private static native void radiusMatch_2(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long matches_mat_nativeObj, float maxDistance, long masks_mat_nativeObj, boolean compactResult); private static native void radiusMatch_3(long nativeObj, long queryImage_nativeObj, long queryKeypoints_mat_nativeObj, long matches_mat_nativeObj, float maxDistance); // C++: void javaGenericDescriptorMatcher::read(string fileName) private static native void read_0(long nativeObj, String fileName); // C++: void javaGenericDescriptorMatcher::train() private static native void train_0(long nativeObj); // C++: void javaGenericDescriptorMatcher::write(string fileName) private static native void write_0(long nativeObj, String fileName); // native support for java finalize() private static native void delete(long nativeObj); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy