com.github.waikatodatamining.matrix.transformation.Standardize Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of matrix-algorithms Show documentation
Show all versions of matrix-algorithms Show documentation
Java library of 2-dimensional matrix algorithms.
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* Standardize.java
* Copyright (C) 2018 University of Waikato, Hamilton, NZ
*/
package com.github.waikatodatamining.matrix.transformation;
import Jama.Matrix;
import com.github.waikatodatamining.matrix.core.MatrixHelper;
import com.github.waikatodatamining.matrix.core.Utils;
/**
* Standardizes the data in the matrix columns according to the mean and stdev.
*
* @author FracPete (fracpete at waikato dot ac dot nz)
*/
public class Standardize
extends AbstractTransformation {
private static final long serialVersionUID = 3277972065292851486L;
/** the means. */
protected double[] m_Means;
/** the stdevs. */
protected double[] m_StdDevs;
/**
* Resets the transformer.
*/
@Override
protected void reset() {
super.reset();
m_Means = null;
m_StdDevs = null;
}
/**
* Configures the transformer.
*
* @param data the data to configure with
*/
@Override
public void configure(Matrix data) {
int j;
m_Means = new double[data.getColumnDimension()];
for (j = 0; j < data.getColumnDimension(); j++)
m_Means[j] = MatrixHelper.mean(data, j);
m_StdDevs = new double[data.getColumnDimension()];
for (j = 0; j < data.getColumnDimension(); j++)
m_StdDevs[j] = MatrixHelper.stdev(data, j);
if (getDebug()) {
getLogger().info("Means: " + Utils.arrayToString(m_Means));
getLogger().info("StdDevs: " + Utils.arrayToString(m_StdDevs));
}
}
/**
* Filters the data.
*
* @param data the data to transform
* @return the transformed data
*/
@Override
protected Matrix doTransform(Matrix data) {
Matrix result;
int i;
int j;
result = data.copy();
for (j = 0; j < result.getColumnDimension(); j++) {
if (m_StdDevs[j] > 0) {
for (i = 0; i < result.getRowDimension(); i++) {
result.set(i, j, (result.get(i, j) - m_Means[j]) / m_StdDevs[j]);
}
}
else if (m_Means[j] != 0) {
for (i = 0; i < result.getRowDimension(); i++) {
result.set(i, j, result.get(i, j) - m_Means[j]);
}
}
}
return result;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy