com.github.waikatodatamining.matrix.algorithms.RowNorm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of matrix-algorithms Show documentation
Show all versions of matrix-algorithms Show documentation
Java library of 2-dimensional matrix algorithms.
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/*
* RowNorm.java
* Copyright (C) 2019 University of Waikato, Hamilton, NZ
*/
package com.github.waikatodatamining.matrix.algorithms;
import com.github.waikatodatamining.matrix.core.StoppedException;
import com.github.waikatodatamining.matrix.core.matrix.Matrix;
import com.github.waikatodatamining.matrix.core.algorithm.MatrixAlgorithm;
import com.github.waikatodatamining.matrix.core.matrix.MatrixHelper;
import com.github.waikatodatamining.matrix.core.Utils;
/**
* Normalises the data in each row of a matrix.
*
* @author Corey Sterling (csterlin at waikato dot ac dot nz)
*/
public class RowNorm
extends MatrixAlgorithm {
private static final long serialVersionUID = -4619086306634317821L;
@Override
protected Matrix doTransform(Matrix data) {
// Calculate the mean and standard deviation for each row
double[] means = new double[data.numRows()];
double[] stdDevs = new double[data.numRows()];
for (int rowIndex = 0; rowIndex < data.numRows(); rowIndex++) {
means[rowIndex] = MatrixHelper.mean(data, rowIndex, false);
stdDevs[rowIndex] = MatrixHelper.stdev(data, rowIndex, false);
}
// Debug: Log the means and standard deviations
if (getDebug()) {
getLogger().info("Means: " + Utils.arrayToString(means));
getLogger().info("StdDevs: " + Utils.arrayToString(stdDevs));
}
// Create a result matrix
Matrix result = data.copy();
// Normalise each row
for (int rowIndex = 0; rowIndex < result.numRows(); rowIndex++) {
if (m_Stopped)
throw new StoppedException();
// Get the mean and standard deviation for this row
double mean = means[rowIndex];
double stdDev = stdDevs[rowIndex];
// Normalise each entry in the row
for (int columnIndex = 0; columnIndex < result.numColumns(); columnIndex++) {
result.set(rowIndex, columnIndex,
Utils.normalise(result.get(rowIndex, columnIndex), mean, stdDev));
}
}
return result;
}
@Override
public boolean isNonInvertible() {
return true;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy