com.github.waikatodatamining.matrix.algorithms.glsw.EPO Maven / Gradle / Ivy
Show all versions of matrix-algorithms Show documentation
package com.github.waikatodatamining.matrix.algorithms.glsw;
import com.github.waikatodatamining.matrix.core.matrix.Matrix;
import com.github.waikatodatamining.matrix.core.matrix.MatrixFactory;
/**
* External Parameter Orthogonalization (EPO)
*
* EPO is based on GLSW with the change, that the D matrix is the identity
* matrix and only a certain number of eigenvectors are kept after applying SVD.
*
* See also: External Parameter Orthogonalization (EPO)
*
* Parameters
* - N: Number of dominant eigenvectors to keep
* - alpha: Defines how strongly GLSW downweights interferences
*
* @author Steven Lang
*/
public class EPO extends GLSW {
private static final long serialVersionUID = -4961123476766554940L;
/** Number of eigenvectors to keep. */
protected int m_N = 5;
public double getN() {
return m_N;
}
public void setN(int n) {
if (n <= 0) {
getLogger().warning("Number of eigenvectors to keep must be > 0 but was " + n + ".");
}
else {
m_N = n;
reset();
}
}
/**
* Instead of calculating D from C, create an identity matrix.
*
* @param C Covariance matrix
* @return Identity matrix
*/
@Override
protected Matrix getWeightMatrix(Matrix C) {
return MatrixFactory.eye(m_N);
}
/**
* Only return the first {@code N} eigenvectors.
*
* @param C Covariance matrix
* @return Matrix with first {@code N} eigenvectors
*/
@Override
protected Matrix getEigenvectorMatrix(Matrix C) {
boolean sortDominance = true;
Matrix V = C.getEigenvectors(sortDominance);
V = V.getSubMatrix(0, V.numRows(), 0, Math.min(V.numColumns(), m_N));
return V;
}
}