All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.waikatodatamining.matrix.algorithms.glsw.EPO Maven / Gradle / Ivy

The newest version!
package com.github.waikatodatamining.matrix.algorithms.glsw;

import com.github.waikatodatamining.matrix.core.matrix.Matrix;
import com.github.waikatodatamining.matrix.core.matrix.MatrixFactory;

/**
 * External Parameter Orthogonalization (EPO)
 * 

* EPO is based on GLSW with the change, that the D matrix is the identity * matrix and only a certain number of eigenvectors are kept after applying SVD. *

* See also: External Parameter Orthogonalization (EPO) * * Parameters * - N: Number of dominant eigenvectors to keep * - alpha: Defines how strongly GLSW downweights interferences * * @author Steven Lang */ public class EPO extends GLSW { private static final long serialVersionUID = -4961123476766554940L; /** Number of eigenvectors to keep. */ protected int m_N = 5; public double getN() { return m_N; } public void setN(int n) { if (n <= 0) { getLogger().warning("Number of eigenvectors to keep must be > 0 but was " + n + "."); } else { m_N = n; reset(); } } /** * Instead of calculating D from C, create an identity matrix. * * @param C Covariance matrix * @return Identity matrix */ @Override protected Matrix getWeightMatrix(Matrix C) { return MatrixFactory.eye(m_N); } /** * Only return the first {@code N} eigenvectors. * * @param C Covariance matrix * @return Matrix with first {@code N} eigenvectors */ @Override protected Matrix getEigenvectorMatrix(Matrix C) { boolean sortDominance = true; Matrix V = C.getEigenvectors(sortDominance); V = V.getSubMatrix(0, V.numRows(), 0, Math.min(V.numColumns(), m_N)); return V; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy