com.github.waikatodatamining.matrix.algorithms.pls.DIPLS Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of matrix-algorithms Show documentation
Show all versions of matrix-algorithms Show documentation
Java library of 2-dimensional matrix algorithms.
The newest version!
package com.github.waikatodatamining.matrix.algorithms.pls;
import com.github.waikatodatamining.matrix.algorithms.Center;
import com.github.waikatodatamining.matrix.core.StoppedException;
import com.github.waikatodatamining.matrix.core.matrix.Matrix;
import com.github.waikatodatamining.matrix.core.matrix.MatrixFactory;
import com.github.waikatodatamining.matrix.core.exceptions.MatrixAlgorithmsException;
import java.util.HashMap;
import java.util.Map;
/**
* Domain Invariant Partial Least Squares.
*
* Domain-Invariant Partial-Least-Squares Regression
*
* Parameters:
* - lambda: Influence of domain variance differences into PLS weighting
*
* @author Steven Lang
*/
public class DIPLS
extends AbstractSingleResponsePLS {
private static final long serialVersionUID = 2782575841430129392L;
/** Model adaption strategy */
protected ModelAdaptionStrategy m_modelAdaptionStrategy = ModelAdaptionStrategy.UNSUPERVISED;
/** Number of source train samples */
protected int m_ns;
/** Number of target train samples */
protected int m_nt;
/** Lambda parameter */
protected double m_lambda = 1.0;
/** Response mean */
protected double m_b0;
/** Loadings */
protected Matrix m_T;
/** Source domain loadings */
protected Matrix m_Ts;
/** Target domain loadings */
protected Matrix m_Tt;
/** Scores */
protected Matrix m_P;
/** Source domain scores */
protected Matrix m_Ps;
/** Target domain scores */
protected Matrix m_Pt;
/** Weights */
protected Matrix m_Wdi;
/** Regression coefficients */
protected Matrix m_bdi;
/** X center */
protected Center m_Xcenter = new Center();
/** Source domain X center */
protected Center m_Xscenter = new Center();
/** Target domain X center */
protected Center m_Xtcenter = new Center();
@Override
protected void doReset() {
super.doReset();
m_T = null;
m_Ts = null;
m_Tt = null;
m_P = null;
m_Ps = null;
m_Pt = null;
m_Wdi = null;
m_bdi = null;
m_b0 = Double.NaN;
}
/**
* Get the lambda parameter
*
* @return Lambda
*/
public double getLambda() {
return m_lambda;
}
/**
* Set the lambda parameter. Must be != 0.
*
* @param lambda Lambda
*/
public void setLambda(double lambda) {
if (Math.abs(lambda) < 1e-8) {
getLogger().warning("Lambda must be != 0 but was " + lambda + ".");
}
else {
m_lambda = lambda;
reset();
}
}
@Override
public String[] getMatrixNames() {
return new String[]{
"T", "Ts", "Tt",
"Wdi",
"P", "Ps", "Pt",
"bdi"
};
}
@Override
public Matrix getMatrix(String name) {
Map map = new HashMap<>();
map.put("T", m_T);
map.put("Ts", m_Ts);
map.put("Tt", m_Tt);
map.put("P", m_P);
map.put("Ps", m_Ps);
map.put("Pt", m_Pt);
map.put("Wdi", m_Wdi);
map.put("bdi", m_bdi);
if (map.containsKey(name)) {
return map.get(name);
}
return null;
}
@Override
public boolean hasLoadings() {
return true;
}
@Override
public Matrix getLoadings() {
return m_T;
}
@Override
public boolean canPredict() {
return true;
}
@Override
protected Matrix doPLSTransform(Matrix predictors) {
return m_Xcenter.transform(predictors).mul(m_Wdi);
}
@Override
protected void doPLSConfigure(Matrix predictors, Matrix response) {
Matrix X = null;
Matrix Xs = null;
Matrix Xt = null;
Matrix y = null;
Matrix wdi, t, ts, tt, p, ps, pt, ca;
Matrix c = null;
int numFeatures = predictors.numColumns();
Matrix I = MatrixFactory.eye(numFeatures);
// Check if correct initialization method was called
if (m_ns == 0 || m_nt == 0)
throw new MatrixAlgorithmsException(
"DIPLS must be initialized with one of the three following methods:\n" +
" - configureSupervised\n" +
" - configureSemiSupervised\n" +
" - initializeUnsupervisedSupervised\n");
// Check if sufficient source and target samples exist
if (m_ns == 1 || m_nt == 1) {
throw new MatrixAlgorithmsException("Number of source and target samples has to be > 1");
}
// Initialize Xs, Xt, X, y
switch (m_modelAdaptionStrategy) {
case UNSUPERVISED:
Xs = predictors.getRows(0, m_ns);
Xt = predictors.getRows(m_ns, predictors.numRows());
X = Xs.copy();
y = response;
break;
case SUPERVISED:
Xs = predictors.getRows(0, m_ns);
Xt = predictors.getRows(m_ns, predictors.numRows());
// X = [Xs, Xt]
X = predictors;
y = response;
break;
case SEMISUPERVISED:
Xs = predictors.getRows(0, m_ns);
Xt = predictors.getRows(m_ns, predictors.numRows());
// X = [Xs, Xt] but without Xt_unlabeled
X = predictors.getRows(0, m_ns + m_ns);
y = response;
break;
}
// Center X, Xs, Xt
X = m_Xcenter.configureAndTransform(X);
Xs = m_Xscenter.configureAndTransform(Xs);
Xt = m_Xtcenter.configureAndTransform(Xt);
// Center y
m_b0 = y.mean(-1).asDouble();
y = y.sub(m_b0);
// Start loop over number of components
for (int a = 0; a < getNumComponents(); a++) {
if (m_Stopped)
throw new StoppedException();
// Calculate domain invariant weights
double yNorm2Squared = y.norm2squared();
Matrix wdiLHS = y.t().mul(X).div(yNorm2Squared);
Matrix XstXs = Xs.t().mul(Xs).mul(1.0 / (m_ns - 1.0));
Matrix XttXt = Xt.t().mul(Xt).mul(1.0 / (m_nt - 1.0));
Matrix XsDiffXt = XstXs.sub(XttXt);
Matrix wdiRHS = I.add(XsDiffXt.mul(m_lambda / (2 * yNorm2Squared))).inverse();
wdi = wdiLHS.mul(wdiRHS).t();
wdi = wdi.normalized();
// Calculate loadings
t = X.mul(wdi);
ts = Xs.mul(wdi);
tt = Xt.mul(wdi);
// Calculate scores
p = (t.t().mul(t)).inverse().mul(t.t()).mul(X);
ps = (ts.t().mul(ts)).inverse().mul(ts.t()).mul(Xs);
pt = (tt.t().mul(tt)).inverse().mul(tt.t()).mul(Xt);
ca = (t.t().mul(t)).inverse().mul(y.t()).mul(t);
// Deflate X, Xs, Xt, y
X = X.sub(t.mul(p));
Xs = Xs.sub(ts.mul(ps));
Xt = Xt.sub(tt.mul(pt));
y = y.sub(t.mul(ca));
// Collect
c = concat(c, ca);
m_T = concat(m_T, t);
m_Ts = concat(m_Ts, ts);
m_Tt = concat(m_Tt, tt);
m_P = concat(m_P, p.t());
m_Ps = concat(m_Ps, ps.t());
m_Pt = concat(m_Pt, pt.t());
m_Wdi = concat(m_Wdi, wdi);
}
// Calculate regression coefficients
m_bdi = m_Wdi.mul((m_P.t().mul(m_Wdi)).inverse()).mul(c.t());
}
/**
* Concat A along columns with a. If A is null, return a.
*
* @param A Base matrix
* @param a Column vector
* @return Concatenation of A and a
*/
private Matrix concat(Matrix A, Matrix a) {
if (A == null) {
return a;
}
else {
return A.concatAlongColumns(a);
}
}
@Override
protected Matrix doPLSPredict(Matrix predictors) {
Matrix recentered = null;
// Recenter
// TODO: m_Xscenter is not used here (Possible bug?)
switch (m_modelAdaptionStrategy) {
case UNSUPERVISED:
recentered = m_Xtcenter.transform(predictors);
break;
case SUPERVISED:
recentered = m_Xcenter.transform(predictors);
break;
case SEMISUPERVISED:
recentered = m_Xcenter.transform(predictors);
break;
}
// Predict
Matrix regression = recentered.mul(m_bdi);
// Add response means
return regression.add(m_b0);
}
/**
* Unsupervised initialization.
*
* @param predictorsSourceDomain Predictors from source domain
* @param predictorsTargetDomain Predictors from target domain
* @param responseSourceDomain Response from source domain
*/
public void configureUnsupervised(Matrix predictorsSourceDomain,
Matrix predictorsTargetDomain,
Matrix responseSourceDomain) {
m_ns = predictorsSourceDomain.numRows();
m_nt = predictorsTargetDomain.numRows();
m_modelAdaptionStrategy = ModelAdaptionStrategy.UNSUPERVISED;
Matrix X = predictorsSourceDomain.concatAlongRows(predictorsTargetDomain);
Matrix y = responseSourceDomain;
configure(X, y);
}
/**
* Supervised initialization.
*
* @param predictorsSourceDomain Predictors from source domain
* @param predictorsTargetDomain Predictors from target domain
* @param responseSourceDomain Response from source domain
* @param responseTargetDomain Response from target domain
*/
public void configureSupervised(Matrix predictorsSourceDomain,
Matrix predictorsTargetDomain,
Matrix responseSourceDomain,
Matrix responseTargetDomain) {
m_ns = predictorsSourceDomain.numRows();
m_nt = predictorsTargetDomain.numRows();
m_modelAdaptionStrategy = ModelAdaptionStrategy.SUPERVISED;
Matrix X = predictorsSourceDomain.concatAlongRows(predictorsTargetDomain);
Matrix y = responseSourceDomain.concatAlongRows(responseTargetDomain);
configure(X, y);
}
/**
* Semisupervised initialization.
*
* @param predictorsSourceDomain Predictors from source domain
* @param predictorsTargetDomain Predictors from target domain
* @param predictorsTargetDomainUnlabeled Predictors from target domain
* without labels
* @param responseSourceDomain Response from source domain
* @param responseTargetDomain Response from target domain
*/
public void configureSemiSupervised(Matrix predictorsSourceDomain,
Matrix predictorsTargetDomain,
Matrix predictorsTargetDomainUnlabeled,
Matrix responseSourceDomain,
Matrix responseTargetDomain) {
m_ns = predictorsSourceDomain.numRows();
m_nt = predictorsTargetDomain.numRows();
m_modelAdaptionStrategy = ModelAdaptionStrategy.SEMISUPERVISED;
Matrix X = predictorsSourceDomain
.concatAlongRows(predictorsTargetDomain)
.concatAlongRows(predictorsTargetDomainUnlabeled);
Matrix y = responseSourceDomain.concatAlongRows(responseTargetDomain);
configure(X, y);
}
/**
* Model Adaption Strategy. Indicates, how to initialize the algorithm.
*/
protected enum ModelAdaptionStrategy {
UNSUPERVISED,
SUPERVISED,
SEMISUPERVISED
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy