com.github.waikatodatamining.matrix.algorithms.pls.NIPALS Maven / Gradle / Ivy
Show all versions of matrix-algorithms Show documentation
package com.github.waikatodatamining.matrix.algorithms.pls;
import com.github.waikatodatamining.matrix.core.StoppedException;
import com.github.waikatodatamining.matrix.core.matrix.Matrix;
import com.github.waikatodatamining.matrix.core.matrix.MatrixFactory;
import com.github.waikatodatamining.matrix.algorithms.Standardize;
/**
* Nonlinear Iterative Partial Least Squares
*
* Implementation oriented at scikit-learn's NIPALS implementation:
* Github scikit-learn NIPALS
*
* Parameters:
* - tol: Iterative convergence tolerance
* - maxIter: Maximum number of iterations
* - normYWeights: Flat to normalize Y weights
* - deflationMode: Mode for Y matrix deflation. Can be either CANONICAL or
* REGRESSION
* @author Steven Lang
*/
public class NIPALS
extends AbstractMultiResponsePLS {
private static final long serialVersionUID = -2760078672082710402L;
/** Scores on X */
protected Matrix m_XScores;
/** Scores on Y */
protected Matrix m_YScores;
/** Loadings on X */
protected Matrix m_XLoadings;
/** Loadings on Y */
protected Matrix m_YLoadings;
/** Weights on X */
protected Matrix m_XWeights;
/** Weights on Y */
protected Matrix m_YWeights;
/** Projection of X into latent space */
protected Matrix m_XRotations;
/** Projection of Y into latent space */
protected Matrix m_YRotations;
/** Training points */
protected Matrix m_X;
/** Regression coefficients */
protected Matrix m_Coef;
/** Inner NIPALS loop improvement tolerance */
protected double m_Tol = 1e-6;
/** Inner NIPALS loop maximum number of iterations */
protected int m_MaxIter = 500;
/** Flag to normalize Y weights */
protected boolean m_NormYWeights = false;
/** Standardize X transformation */
protected Standardize m_StandardizeX = new Standardize();
/** Standardize Y transformation */
protected Standardize m_StandardizeY = new Standardize();
/** X and Y deflation Mode */
protected DeflationMode m_deflationMode = DeflationMode.REGRESSION;
public boolean isNormYWeights() {
return m_NormYWeights;
}
public void setNormYWeights(boolean normYWeights) {
m_NormYWeights = normYWeights;
}
public int getMaxIter() {
return m_MaxIter;
}
public void setMaxIter(int maxIter) {
if (maxIter < 0) {
getLogger().warning("Maximum iterations parameter must be positive " +
"but was " + maxIter + ".");
} else {
this.m_MaxIter = maxIter;
reset();
}
}
public double getTol() {
return m_Tol;
}
public void setTol(double tol) {
if (tol < 0) {
getLogger().warning("Tolerance parameter must be positive but " +
"was " + tol + ".");
} else {
this.m_Tol = tol;
reset();
}
}
@Override
protected int getMinColumnsResponse() {
return 1;
}
@Override
protected int getMaxColumnsResponse() {
return -1;
}
public DeflationMode getDeflationMode() {
return m_deflationMode;
}
public void setDeflationMode(DeflationMode deflationMode) {
m_deflationMode = deflationMode;
}
@Override
protected void doPLSConfigure(Matrix predictors, Matrix response) {
Matrix X, Y, xkScore, ykScore, xkLoading, ykLoading, xkWeight, ykWeight;
getLogger();
// Init
X = predictors;
X = m_StandardizeX.configureAndTransform(X);
Y = response;
Y = m_StandardizeY.configureAndTransform(Y);
// Dimensions
int numRows = X.numRows();
int numFeatures = X.numColumns();
int numClasses = Y.numColumns();
int numComponents = getNumComponents();
// Init matrices
m_XScores = MatrixFactory.zeros(numRows, numComponents); // T
m_YScores = MatrixFactory.zeros(numRows, numComponents); // U
m_XWeights = MatrixFactory.zeros(numFeatures, numComponents); // W
m_YWeights = MatrixFactory.zeros(numClasses, numComponents); // C
m_XLoadings = MatrixFactory.zeros(numFeatures, numComponents); // P
m_YLoadings = MatrixFactory.zeros(numClasses, numComponents); // Q
ykLoading = MatrixFactory.zeros(numClasses, 1);
double eps = 1e-10;
for (int k = 0; k < numComponents; k++) {
if (m_Stopped)
throw new StoppedException();
if (Y.transpose().mul(Y).all(e -> e < eps)) {
getLogger().warning("Y residual constant at iteration " + k);
break;
}
NipalsLoopResult res = nipalsLoop(X, Y);
xkWeight = res.xWeights;
ykWeight = res.yWeights;
// Calculate latent X and Y scores
xkScore = X.mul(xkWeight);
ykScore = Y.mul(ykWeight).div(ykWeight.norm2squared());
if (xkScore.norm2squared() < eps) {
getLogger().warning("X scores are null at component " + k);
break;
}
// Deflate X
xkLoading = X.t().mul(xkScore).div(xkScore.norm2squared());
X = X.sub(xkScore.mul(xkLoading.t()));
// Deflate Y
switch (getDeflationMode()) {
case CANONICAL:
ykLoading = Y.t().mul(ykScore).div(ykScore.norm2squared());
Y = Y.sub(ykScore.mul(ykLoading.t()));
break;
case REGRESSION:
ykLoading = Y.t().mul(xkScore).div(xkScore.norm2squared());
Y = Y.sub(xkScore.mul(ykLoading.t()));
break;
}
// Store results
m_XScores.setColumn(k, xkScore);
m_YScores.setColumn(k, ykScore);
m_XWeights.setColumn(k, xkWeight);
m_YWeights.setColumn(k, ykWeight);
m_XLoadings.setColumn(k, xkLoading);
m_YLoadings.setColumn(k, ykLoading);
}
m_X = X;
m_XRotations = m_XWeights.mul((m_XLoadings.t().mul(m_XWeights)).pseudoInverse());
if (Y.numColumns() > 1) {
m_YRotations = m_YWeights.mul((m_YLoadings.t().mul(m_YWeights)).pseudoInverse());
}
else {
m_YRotations = MatrixFactory.filled(1, 1, 1.0);
}
// Calculate regression coefficients
Matrix yStds = MatrixFactory.fromColumn(m_StandardizeY.getStdDevs());
m_Coef = m_XRotations.mul(m_YLoadings.t()).scaleByRowVector(yStds);
}
/**
* Perform the inner NIPALS loop
*
* @param X Predictors Matrix
* @param Y Response Matrix
* @return NipalsLoopResult
*/
protected NipalsLoopResult nipalsLoop(Matrix X, Matrix Y) {
int iterations = 0;
Matrix yScore = Y.getColumn(0); // (y scores)
Matrix xWeight;
Matrix xWeightOld = MatrixFactory.zeros(X.numColumns(), 1);
Matrix yWeight;
Matrix xScore;
Matrix XpInv = null;
Matrix YpInv = null;
double eps = 1e-16;
// Repeat 1) - 3) until convergence: either change of u is lower than m_Tol or maximum
// number of iterations has been reached (m_MaxIter)
while (true) {
if (m_Stopped)
throw new StoppedException();
// 1) Update X weights
if (getWeightCalculationMode() == WeightCalculationMode.CCA){
if (XpInv == null){
// sklearn uses pinv here which ojAlgo implicitly does
XpInv = X.inverse();
}
xWeight = XpInv.mul(yScore);
} else { // PLS
xWeight = X.t().mul(yScore).div(yScore.norm2squared());
}
// Add eps if necessary to converge to a more acceptable solution
if (xWeight.norm2squared() < eps) {
xWeight = xWeight.add(eps);
}
// Normalize
xWeight = xWeight.div(Math.sqrt(xWeight.norm2squared()) + eps);
// 2) Calculate latent X scores
xScore = X.mul(xWeight);
// 3) Update Y weights
if (getWeightCalculationMode() == WeightCalculationMode.CCA){
if (YpInv == null){
// sklearn uses pinv here which ojAlgo implicitly does
YpInv = Y.inverse();
}
yWeight = YpInv.mul(xScore);
} else { // PLS
// WeightCalculationMode A: Regress each Y column on xscore
yWeight = Y.t().mul(xScore).div(xScore.norm2squared());
}
// Normalize Y weights
if (m_NormYWeights) {
yWeight = yWeight.div(Math.sqrt(yWeight.norm2squared()) + eps);
}
// 4) Calculate ykScores
yScore = Y.mul(yWeight).div(yWeight.norm2squared() + eps);
Matrix xWeightDiff = xWeight.sub(xWeightOld);
if (xWeightDiff.norm2squared() < m_Tol || Y.numColumns() == 1) {
break;
}
if (iterations >= m_MaxIter) {
break;
}
// Update stopping conditions
xWeightOld = xWeight;
iterations++;
}
return new NipalsLoopResult(xWeight, yWeight, iterations);
}
@Override
protected Matrix doPLSPredict(Matrix predictors) {
Matrix X = m_StandardizeX.transform(predictors);
Matrix yMeans = MatrixFactory.fromColumn(m_StandardizeY.getMeans());
return X.mul(m_Coef).addByVector(yMeans);
}
@Override
protected Matrix doPLSTransform(Matrix predictors) {
Matrix X = m_StandardizeX.transform(predictors);
// Apply rotations
return X.mul(m_XRotations);
}
protected Matrix doTransformResponse(Matrix response) {
Matrix Y = m_StandardizeY.transform(response);
// Apply rotations
return Y.mul(m_YRotations);
}
@Override
public String[] getMatrixNames() {
return new String[]{"T", "U", "P", "Q"};
}
@Override
public Matrix getMatrix(String name) {
switch (name) {
case "T":
return m_XScores;
case "U":
return m_YScores;
case "P":
return m_XLoadings;
case "Q":
return m_YLoadings;
}
return null;
}
@Override
public boolean hasLoadings() {
return true;
}
@Override
protected void doReset() {
super.doReset();
m_XScores = null;
m_YScores = null;
m_XLoadings = null;
m_YLoadings = null;
m_XWeights = null;
m_YWeights = null;
m_Coef = null;
m_X = null;
m_XRotations = null;
m_YRotations = null;
m_StandardizeX = new Standardize();
m_StandardizeY = new Standardize();
}
@Override
public Matrix getLoadings() {
return m_XLoadings;
}
@Override
public boolean canPredict() {
return true;
}
public Matrix getCoef() {
return m_Coef;
}
/**
* NIPALS loop result: x and y weight matrices and number of iterations.
*/
private class NipalsLoopResult {
Matrix xWeights;
Matrix yWeights;
int iterations;
public NipalsLoopResult(Matrix xWeights, Matrix yWeights, int iterations) {
this.xWeights = xWeights;
this.yWeights = yWeights;
this.iterations = iterations;
}
}
protected WeightCalculationMode getWeightCalculationMode(){
return WeightCalculationMode.PLS; // Mode A in sklearn
}
/**
* Deflation mode Enum.
*/
public enum DeflationMode {
CANONICAL,
REGRESSION
}
/**
* Mode for x/y-weight calculation
*/
protected enum WeightCalculationMode {
PLS,
CCA
}
}