moa.classifiers.core.driftdetection.DDM Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* DDM.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
* @author Manuel Baena ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package moa.classifiers.core.driftdetection;
import moa.core.ObjectRepository;
import moa.options.IntOption;
import moa.tasks.TaskMonitor;
/**
* Drift detection method based in DDM method of Joao Gama SBIA 2004.
*
* João Gama, Pedro Medas, Gladys Castillo, Pedro Pereira Rodrigues: Learning
* with Drift Detection. SBIA 2004: 286-295
*
* @author Manuel Baena ([email protected])
* @version $Revision: 7 $
*/
public class DDM extends AbstractChangeDetector {
private static final long serialVersionUID = -3518369648142099719L;
//private static final int DDM_MINNUMINST = 30;
public IntOption minNumInstancesOption = new IntOption(
"minNumInstances",
'n',
"The minimum number of instances before permitting detecting change.",
30, 0, Integer.MAX_VALUE);
private int m_n;
private double m_p;
private double m_s;
private double m_psmin;
private double m_pmin;
private double m_smin;
public DDM() {
resetLearning();
}
@Override
public void resetLearning() {
m_n = 1;
m_p = 1;
m_s = 0;
m_psmin = Double.MAX_VALUE;
m_pmin = Double.MAX_VALUE;
m_smin = Double.MAX_VALUE;
}
@Override
public void input(double prediction) {
// prediction must be 1 or 0
// It monitors the error rate
if (this.isChangeDetected == true || this.isInitialized == false) {
resetLearning();
this.isInitialized = true;
}
m_p = m_p + (prediction - m_p) / (double) m_n;
m_s = Math.sqrt(m_p * (1 - m_p) / (double) m_n);
m_n++;
// System.out.print(prediction + " " + m_n + " " + (m_p+m_s) + " ");
this.estimation = m_p;
this.isChangeDetected = false;
this.isWarningZone = false;
this.delay = 0;
if (m_n < this.minNumInstancesOption.getValue()) {
return;
}
if (m_p + m_s <= m_psmin) {
m_pmin = m_p;
m_smin = m_s;
m_psmin = m_p + m_s;
}
if (m_n > this.minNumInstancesOption.getValue() && m_p + m_s > m_pmin + 3 * m_smin) {
//System.out.println(m_p + ",D");
this.isChangeDetected = true;
//resetLearning();
} else if (m_p + m_s > m_pmin + 2 * m_smin) {
//System.out.println(m_p + ",W");
this.isWarningZone = true;
} else {
this.isWarningZone = false;
//System.out.println(m_p + ",N");
}
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy