moa.classifiers.core.splitcriteria.VarianceReductionSplitCriterion Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* VarianceReductionSplitCriterion.java
* Copyright (C) 2013 University of Porto, Portugal
* @author Katie de Lange, E. Almeida, J. Gama
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*
*/
/* Project Knowledge Discovery from Data Streams, FCT LIAAD-INESC TEC,
*
* Contact: [email protected]
*/
package moa.classifiers.core.splitcriteria;
import moa.core.ObjectRepository;
import moa.options.AbstractOptionHandler;
import moa.tasks.TaskMonitor;
public class VarianceReductionSplitCriterion extends AbstractOptionHandler implements SplitCriterion {
private static final long serialVersionUID = 1L;
/* @Override
public double getMeritOfSplit(double[] preSplitDist, double[][] postSplitDists) {
double N = preSplitDist[0];
double SDR = computeSD(preSplitDist);
// System.out.print("postSplitDists.length"+postSplitDists.length+"\n");
for(int i = 0; i < postSplitDists.length; i++)
{
double Ni = postSplitDists[i][0];
SDR -= (Ni/N)*computeSD(postSplitDists[i]);
}
return SDR;
}*/
@Override
public double getMeritOfSplit(double[] preSplitDist, double[][] postSplitDists) {
double SDR=0.0;
double N = preSplitDist[0];
int count = 0;
for(int i = 0; i < postSplitDists.length; i++)
{
double Ni = postSplitDists[i][0];
if(Ni >=5.0){
count = count +1;
}
}
if(count == postSplitDists.length){
SDR = computeSD(preSplitDist);
for(int i = 0; i < postSplitDists.length; i++)
{
double Ni = postSplitDists[i][0];
SDR -= (Ni/N)*computeSD(postSplitDists[i]);
}
}
return SDR;
}
@Override
public double getRangeOfMerit(double[] preSplitDist) {
return 1;
}
public static double computeSD(double[] dist) {
int N = (int)dist[0];
double sum = dist[1];
double sumSq = dist[2];
// return Math.sqrt((sumSq - ((sum * sum)/N))/N);
return (sumSq - ((sum * sum)/N))/N;
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy