moa.classifiers.lazy.kNN Maven / Gradle / Ivy
Show all versions of moa Show documentation
/*
* kNN.java
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.classifiers.lazy;
import java.io.StringReader;
import moa.classifiers.AbstractClassifier;
import moa.classifiers.lazy.neighboursearch.KDTree;
import moa.classifiers.lazy.neighboursearch.LinearNNSearch;
import moa.classifiers.lazy.neighboursearch.NearestNeighbourSearch;
import moa.core.InstancesHeader;
import moa.core.Measurement;
import moa.options.IntOption;
import moa.options.MultiChoiceOption;
import weka.core.Instance;
import weka.core.Instances;
/**
* k Nearest Neighbor.
*
* Valid options are:
*
* -k number of neighbours
-m max instances
*
* @author Jesse Read ([email protected])
* @version 03.2012
*/
public class kNN extends AbstractClassifier {
private static final long serialVersionUID = 1L;
public IntOption kOption = new IntOption( "k", 'k', "The number of neighbors", 10, 1, Integer.MAX_VALUE);
public IntOption limitOption = new IntOption( "limit", 'w', "The maximum number of instances to store", 1000, 1, Integer.MAX_VALUE);
public MultiChoiceOption nearestNeighbourSearchOption = new MultiChoiceOption(
"nearestNeighbourSearch", 'n', "Nearest Neighbour Search to use", new String[]{
"LinearNN", "KDTree"},
new String[]{"Brute force search algorithm for nearest neighbour search. ",
"KDTree search algorithm for nearest neighbour search"
}, 0);
int C = 0;
@Override
public String getPurposeString() {
return "kNN: special.";
}
protected Instances window;
@Override
public void setModelContext(InstancesHeader context) {
try {
this.window = new Instances(new StringReader(context.toString()),0);
this.window.setClassIndex(context.classIndex());
} catch(Exception e) {
System.err.println("Error: no Model Context available.");
e.printStackTrace();
System.exit(1);
}
}
@Override
public void resetLearningImpl() {
this.window = null;
}
@Override
public void trainOnInstanceImpl(Instance inst) {
if (inst.classValue() > C)
C = (int)inst.classValue();
if (this.window == null) {
this.window = new Instances(inst.dataset());
}
if (this.limitOption.getValue() <= this.window.numInstances()) {
this.window.delete(0);
}
this.window.add(inst);
}
@Override
public double[] getVotesForInstance(Instance inst) {
double v[] = new double[C+1];
try {
NearestNeighbourSearch search;
if (this.nearestNeighbourSearchOption.getChosenIndex()== 0) {
search = new LinearNNSearch(this.window);
} else {
search = new KDTree();
search.setInstances(this.window);
}
if (this.window.numInstances()>0) {
Instances neighbours = search.kNearestNeighbours(inst,Math.min(kOption.getValue(),this.window.numInstances()));
for(int i = 0; i < neighbours.numInstances(); i++) {
v[(int)neighbours.instance(i).classValue()]++;
}
}
} catch(Exception e) {
//System.err.println("Error: kNN search failed.");
//e.printStackTrace();
//System.exit(1);
return new double[inst.numClasses()];
}
return v;
}
@Override
protected Measurement[] getModelMeasurementsImpl() {
return null;
}
@Override
public void getModelDescription(StringBuilder out, int indent) {
}
public boolean isRandomizable() {
return false;
}
}