moa.classifiers.meta.DACC Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* DACC.java
*
* @author Ghazal Jaber ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.meta;
import moa.classifiers.AbstractClassifier;
import moa.classifiers.Classifier;
import moa.core.DoubleVector;
import moa.core.Measurement;
import moa.options.ClassOption;
import moa.options.FloatOption;
import moa.options.MultiChoiceOption;
import weka.core.Instance;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
/**
* Dynamic Adaptation to Concept Changes.
* Ensemble method for data streams that adapts to concept changes.
*
* Reference: JABER, G., CORNUEJOLS, A., and TARROUX, P. A New On-Line Learning Method
* for Coping with Recurring Concepts: The ADACC System. In : Neural Information
* Processing. Springer Berlin Heidelberg, 2013. p. 595-604.
*
* @author Ghazal Jaber ([email protected])
*
*/
public class DACC extends AbstractClassifier {
private static final long serialVersionUID = 1L;
@Override
public String getPurposeString() {
return "Dynamic Adaptation to Concept Changes for data streams.";
}
/**
* Base classifier
*/
public ClassOption learnerOption = new ClassOption("baseLearner", 'l',
"Classifier to train.", Classifier.class, "bayes.NaiveBayes");
/**
* Ensemble size
*/
public FloatOption memberCountOption = new FloatOption("ensembleSize", 'n', "The maximum number of classifiers in an ensemble.", 20, 1, Integer.MAX_VALUE);
/**
* Maturity age of classifiers
*/
public FloatOption maturityOption = new FloatOption("maturity", 'a',
"The maturity age.", 20, 0, 100);
/**
* Size of the evaluation window for weights computing
*/
public FloatOption evaluationSizeOption = new FloatOption("evalSize", 'e',
"The size of the evaluation window.", 20, 1, 1000);
/**
* Combination functions: MAX and WVD (MAX leads to a faster reactivity to the change, WVD is more robust to noise)
*/
public MultiChoiceOption combinationOption= new MultiChoiceOption("cmb", 'c', "The combination function.",
new String[]{"MAX","WVD"} , new String[] {"Maximum","Weighted Vote of the best"},
0);
/**
* Ensemble of classifiers
*/
protected Classifier[] ensemble;
/**
* Weights of classifiers
*/
protected Pair[] ensembleWeights;
/**
* Age of classifiers (to compare with maturity age)
*/
protected double[] ensembleAges;
/**
* Evaluation windows (recent classification errors)
*/
protected int[][] ensembleWindows;
/**
* Number of instances from the stream
*/
protected int nbInstances = 0;
/**
* Initializes the method variables
*/
protected void initVariables(){
int ensembleSize = (int)this.memberCountOption.getValue();
this.ensemble = new Classifier[ensembleSize];
this.ensembleAges = new double[ensembleSize];
this.ensembleWindows = new int[ensembleSize][(int)this.evaluationSizeOption.getValue()];
}
@Override
public void resetLearningImpl() {
Classifier learner = (Classifier) getPreparedClassOption(this.learnerOption);
learner.resetLearning();
initVariables();
this.ensembleWeights = new Pair[this.ensemble.length];
for (int i = 0; i < this.ensemble.length; i++) {
this.ensemble[i] = learner.copy();
this.ensembleAges[i] = 0;
this.ensembleWeights[i] = new Pair(0.0,i);
this.ensembleWindows[i] = new int[(int)this.evaluationSizeOption.getValue()];
}
}
@Override
public void trainOnInstanceImpl(Instance inst) {
trainAndClassify(inst);
}
@Override
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
ArrayList arr;
int cmb = this.combinationOption.getChosenIndex();
if (cmb == 0)
arr = getMAXIndexes();
else
arr = getWVDIndexes();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < arr.size(); i++) {
if (this.ensembleWeights[arr.get(i)].val > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[arr.get(i)].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(this.ensembleWeights[arr.get(i)].val);
combinedVote.addValues(vote);
}
}
}
}
return combinedVote.getArrayRef();
}
/**
* Receives a training instance from the stream and
* updates the adaptive classifiers accordingly
* @param inst the instance from the stream
*/
protected void trainAndClassify(Instance inst){
nbInstances++;
boolean mature = true;
boolean unmature = true;
for (int i = 0; i < getNbActiveClassifiers(); i++) {
// check if all adaptive learners are mature
if (this.ensembleAges[i] < this.maturityOption.getValue() && i= this.maturityOption.getValue() && i= this.ensembleWeights[i].index + 1){
// train adaptive learners
if (i < getNbAdaptiveClassifiers())
this.ensemble[i].trainOnInstance(inst);
int val = this.ensemble[i].correctlyClassifies(inst)?1:0;
double sum = updateEvaluationWindow(i, val);
this.ensembleWeights[i].val = sum;
this.ensembleAges[i] = this.ensembleAges[i]+1;
}
}
// if all adaptive learners are not mature --> set weights to one
if (unmature)
for (int i = 0; i < getNbAdaptiveClassifiers(); i++)
this.ensembleWeights[i].val=1;
// if all adaptive learners are mature --> delete one learner
if (mature){
Pair[] learners = getHalf(false);
if (learners.length > 0){
double rand = classifierRandom.nextInt(learners.length);
discardModel(learners[(int)rand].index);
}
}
}
/**
* Resets a classifier in the ensemble
* @param index the index of the classifier in the ensemble
*/
public void discardModel(int index) {
this.ensemble[index].resetLearning();
this.ensembleWeights[index].val = 0;
this.ensembleAges[index] = 0;
this.ensembleWindows[index]=new int[(int)this.evaluationSizeOption.getValue()];
}
/**
* Updates the evaluation window of a classifier and returns the
* updated weight value.
* @param index the index of the classifier in the ensemble
* @param val the last evaluation record of the classifier
* @return the updated weight value of the classifier
*/
protected double updateEvaluationWindow(int index,int val){
int[] newEnsembleWindows = new int[this.ensembleWindows[index].length];
int wsize = (int)Math.min(this.evaluationSizeOption.getValue(),this.ensembleAges[index]+1);
int sum = 0;
for (int i = 0; i < wsize-1 ; i++){
newEnsembleWindows[i+1] = this.ensembleWindows[index][i];
sum = sum + this.ensembleWindows[index][i];
}
newEnsembleWindows[0] = val;
this.ensembleWindows[index] = newEnsembleWindows;
if (this.ensembleAges[index] >= this.maturityOption.getValue())
return (sum + val) * 1.0/wsize;
else
return 0;
}
/**
* Returns the best (or worst) half of classifiers in the adaptive ensemble.
* The best classifiers are used to compute the stability index in ADACC. The worst
* classifiers are returned in order to select a classifier for deletion.
* @param bestHalf boolean value set to true (false) if we want to return
* the best (worst) half of adaptive classifiers.
* @param horizon
* @return an array containing the weight values of the corresponding classifiers
* and their indexes in the ensemble.
*/
protected Pair[] getHalf(boolean bestHalf){
Pair[] newEnsembleWeights = new Pair[getNbAdaptiveClassifiers()];
System.arraycopy(ensembleWeights, 0, newEnsembleWeights, 0, newEnsembleWeights.length);
if (bestHalf)
Arrays.sort(newEnsembleWeights,Collections.reverseOrder());
else
Arrays.sort(newEnsembleWeights);
Pair[] result = new Pair[(int)Math.floor(newEnsembleWeights.length/2)];
System.arraycopy(newEnsembleWeights, 0, result, 0, result.length);
return result;
}
/**
* Returns the classifiers that vote for the final prediction
* when the MAX combination function is selected
* @return the classifiers with the highest weight value
*/
protected ArrayList getMAXIndexes(){
ArrayList maxWIndex=new ArrayList();
Pair[] newEnsembleWeights = new Pair[getNbActiveClassifiers()];
System.arraycopy(ensembleWeights, 0, newEnsembleWeights, 0, newEnsembleWeights.length);
Arrays.sort(newEnsembleWeights);
double maxWVal = newEnsembleWeights[newEnsembleWeights.length-1].val;
for (int i = newEnsembleWeights.length-1 ; i>=0 ; i--){
if (newEnsembleWeights[i].val!=maxWVal)
break;
else
maxWIndex.add(newEnsembleWeights[i].index);
}
return maxWIndex;
}
/**
* Returns the classifiers that vote for the final prediction
* when the WVD combination function is selected
* @return the classifiers whose weights lie in the higher half
* of the ensemble's weight interval.
*/
protected ArrayList getWVDIndexes(){
ArrayList maxWIndex = new ArrayList();
Pair[] newEnsembleWeights = new Pair[getNbActiveClassifiers()];
System.arraycopy(ensembleWeights, 0, newEnsembleWeights, 0, newEnsembleWeights.length);
Arrays.sort(newEnsembleWeights);
double minWVal = newEnsembleWeights[0].val;
double maxWVal = newEnsembleWeights[newEnsembleWeights.length-1].val;
double med = (maxWVal-minWVal)*1.0/2;
for (int i = newEnsembleWeights.length-1 ; i>=0 ; i--)
if (newEnsembleWeights[i].val < med)
break;
else
maxWIndex.add(newEnsembleWeights[i].index);
return maxWIndex;
}
/**
* Returns the number of classifiers used for prediction
* which includes the adaptive learners and the snapshots in ADACC
* @return the number of classifiers used for prediction
*/
protected int getNbActiveClassifiers(){
return this.ensemble.length;
}
/**
* Returns the number of adaptive classifiers in the ensemble
* which excludes the static snapshots in ADACC
* @return the number of adaptive classifiers
*/
protected int getNbAdaptiveClassifiers(){
return this.ensemble.length;
}
@Override
public void getModelDescription(StringBuilder out, int indent) {
// TODO Auto-generated method stub
}
@Override
protected Measurement[] getModelMeasurementsImpl() {
Measurement[] measurements = new Measurement[4];
measurements[0] = new Measurement("size ",
this.ensemble.length);
measurements[1] = new Measurement("maturity ",
this.maturityOption.getValue());
measurements[2] = new Measurement("evalsize ",
this.evaluationSizeOption.getValue());
measurements[3] = new Measurement("cmb ",
this.combinationOption.getChosenIndex());
return measurements;
}
@Override
public boolean isRandomizable() {
return true;
}
@Override
public Classifier[] getSubClassifiers() {
return this.ensemble.clone();
}
/**
* This helper class is used to sort an array of pairs of integers: val and index.
* The array is sorted based on the val field.
* @author Ghazal Jaber
*
*/
protected class Pair implements Comparable, Serializable {
private static final long serialVersionUID = 1L;
double val;
int index;
public Pair(double d, int i){
this.val = d;
this.index = i;
}
@Override
public int compareTo(Pair other){
if (this.val - other.val > 0 )
return 1;
else
if (this.val == other.val)
return 0;
return -1;
}
public double getValue(){
return val;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy