moa.classifiers.rules.driftdetection.PageHinkleyTest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* SDRSplitCriterionAMRules.java
* Copyright (C) 2014 University of Porto, Portugal
* @author A. Bifet, J. Duarte, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules.driftdetection;
import java.io.Serializable;
public class PageHinkleyTest implements Serializable {
private static final long serialVersionUID = 1L;
protected double cumulativeSum;
public double getCumulativeSum() {
return cumulativeSum;
}
public double getMinimumValue() {
return minimumValue;
}
protected double minimumValue;
protected double sumAbsolutError;
protected long phinstancesSeen;
protected double threshold;
protected double alpha;
public PageHinkleyTest(double threshold, double alpha) {
this.threshold = threshold;
this.alpha = alpha;
this.reset();
}
public void reset() {
this.cumulativeSum = 0.0;
this.minimumValue = Double.MAX_VALUE;
this.sumAbsolutError = 0.0;
this.phinstancesSeen = 0;
}
//Compute Page-Hinkley test
public boolean update(double error) {
this.phinstancesSeen++;
double absolutError = Math.abs(error);
this.sumAbsolutError = this.sumAbsolutError + absolutError;
if (this.phinstancesSeen > 30) {
double mT = absolutError - (this.sumAbsolutError / this.phinstancesSeen) - this.alpha;
this.cumulativeSum = this.cumulativeSum + mT; // Update the cumulative mT sum
if (this.cumulativeSum < this.minimumValue) { // Update the minimum mT value if the new mT is smaller than the current minimum
this.minimumValue = this.cumulativeSum;
}
return (((this.cumulativeSum - this.minimumValue) > this.threshold));
}
return false;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy