moa.classifiers.rules.functions.TargetMean Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* TargetMean.java
* Copyright (C) 2014 University of Porto, Portugal
* @author J. Duarte, A. Bifet, J. Gama
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.classifiers.rules.functions;
/**
* TargetMean - Returns the mean of the target variable of the training instances
*
* @author João Duarte
*
* */
import weka.core.Instance;
import moa.classifiers.AbstractClassifier;
import moa.classifiers.Regressor;
import moa.core.Measurement;
import moa.core.StringUtils;
import moa.options.FloatOption;
public class TargetMean extends AbstractClassifier implements Regressor {
/**
*
*/
protected long n;
protected double sum;
protected double errorSum;
protected double nError;
private double fadingErrorFactor;
private static final long serialVersionUID = 7152547322803559115L;
public FloatOption fadingErrorFactorOption = new FloatOption(
"fadingErrorFactor", 'e',
"Fading error factor for the TargetMean accumulated error", 0.99, 0, 1);
@Override
public boolean isRandomizable() {
return false;
}
@Override
public double[] getVotesForInstance(Instance inst) {
double[] currentMean=new double[1];
if (n>0)
currentMean[0]=sum/n;
else
currentMean[0]=0;
return currentMean;
}
@Override
public void resetLearningImpl() {
sum=0;
n=0;
errorSum=Double.MAX_VALUE;
nError=0;
}
@Override
public void trainOnInstanceImpl(Instance inst) {
updateAccumulatedError(inst);
++this.n;
this.sum+=inst.classValue();
}
protected void updateAccumulatedError(Instance inst){
double mean=0;
nError=1+fadingErrorFactor*nError;
if(n>0)
mean=sum/n;
errorSum=Math.abs(inst.classValue()-mean)+fadingErrorFactor*errorSum;
}
@Override
protected Measurement[] getModelMeasurementsImpl() {
return null;
}
@Override
public void getModelDescription(StringBuilder out, int indent) {
StringUtils.appendIndented(out, indent, "Current Mean: " + this.sum/this.n);
StringUtils.appendNewline(out);
}
/* JD
* Resets the learner but initializes with a starting point
* */
public void reset(double currentMean, long numberOfInstances) {
this.sum=currentMean*numberOfInstances;
this.n=numberOfInstances;
this.resetError();
}
/* JD
* Resets the learner but initializes with a starting point
* */
public double getCurrentError(){
if(this.nError>0)
return this.errorSum/this.nError;
else
return Double.MAX_VALUE;
}
public TargetMean(TargetMean t) {
super();
this.n = t.n;
this.sum = t.sum;
this.errorSum = t.errorSum;
this.nError = t.nError;
this.fadingErrorFactor = t.fadingErrorFactor;
this.fadingErrorFactorOption = t.fadingErrorFactorOption;
}
public TargetMean() {
super();
fadingErrorFactor=fadingErrorFactorOption.getValue();
}
public void resetError() {
this.errorSum=0;
this.nError=0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy