moa.recommender.rc.utils.DenseVector Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* DenseVector.java
* Copyright (C) 2012 Universitat Politecnica de Catalunya
* @author Alex Catarineu ([email protected])
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*
*/
package moa.recommender.rc.utils;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
public class DenseVector extends Vector {
/**
*
*/
private static final long serialVersionUID = -6077169543484777829L;
private ArrayList list;
public DenseVector() {
list = new ArrayList();
}
public DenseVector(ArrayList list) {
this.list = list;
}
@Override
public int size() {
return list.size();
}
@Override
public void set(int index, double val) {
while (index < list.size())
list.add(0.0);
list.set(index, val);
}
@Override
public void remove(int index) {
list.remove(index);
}
@Override
public Double get(int index) {
if (index < 0 || index >= list.size()) return null;
return list.get(index);
}
@Override
public Set getIdxs() {
HashSet keys = new HashSet();
for (int i = 0; i < list.size(); ++i)
keys.add(i);
return keys;
}
@Override
public Vector copy() {
return new DenseVector(new ArrayList(list));
}
public class DenseVectorIterator implements Iterator> {
private int index = 0;
@Override
public boolean hasNext() {
return index < DenseVector.this.list.size();
}
@Override
public Pair next() {
return new Pair(index, DenseVector.this.list.get(index++));
}
@Override
public void remove() {
list.remove(index);
}
}
@Override
public Iterator> iterator() {
return new DenseVectorIterator();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy