moa.streams.FilteredStream Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* FilteredStream.java
* Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
* @author Richard Kirkby ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.streams;
import moa.core.InstancesHeader;
import moa.core.ObjectRepository;
import moa.options.AbstractOptionHandler;
import moa.options.ClassOption;
import moa.options.OptionHandler;
import moa.streams.filters.StreamFilter;
import moa.tasks.TaskMonitor;
import weka.core.Instance;
/**
* Class for representing a stream that is filtered.
*
* @author Richard Kirkby ([email protected])
* @version $Revision: 7 $
*/
public class FilteredStream extends AbstractOptionHandler implements
InstanceStream {
@Override
public String getPurposeString() {
return "A stream that is filtered.";
}
private static final long serialVersionUID = 1L;
public ClassOption streamOption = new ClassOption("stream", 's',
"Stream to filter.", InstanceStream.class,
"generators.RandomTreeGenerator");
public ClassOption filtersOption = new ClassOption("filters", 'f',
"Filters to apply.", StreamFilter.class,
"AddNoiseFilter");
protected InstanceStream filterChain;
@Override
public void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
StreamFilter filters;
monitor.setCurrentActivity("Materializing filter " //+ (i + 1)
+ "...", -1.0);
filters = (StreamFilter) getPreparedClassOption(this.filtersOption);
if (monitor.taskShouldAbort()) {
return;
}
if (filters instanceof OptionHandler) {
monitor.setCurrentActivity("Preparing filter " //+ (i + 1)
+ "...", -1.0);
((OptionHandler) filters).prepareForUse(monitor, repository);
if (monitor.taskShouldAbort()) {
return;
}
}
InstanceStream chain = (InstanceStream) getPreparedClassOption(this.streamOption);
filters.setInputStream(chain);
chain = filters;
this.filterChain = chain;
}
@Override
public long estimatedRemainingInstances() {
return this.filterChain.estimatedRemainingInstances();
}
@Override
public InstancesHeader getHeader() {
return this.filterChain.getHeader();
}
@Override
public boolean hasMoreInstances() {
return this.filterChain.hasMoreInstances();
}
@Override
public boolean isRestartable() {
return this.filterChain.isRestartable();
}
@Override
public Instance nextInstance() {
return this.filterChain.nextInstance();
}
@Override
public void restart() {
this.filterChain.restart();
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy