moa.streams.generators.WaveformGeneratorDrift Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* WaveformGeneratorDrift.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
* @author Christophe Salperwyck
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
package moa.streams.generators;
import weka.core.DenseInstance;
import weka.core.Instance;
import moa.core.InstancesHeader;
import moa.core.ObjectRepository;
import moa.options.IntOption;
import moa.tasks.TaskMonitor;
/**
* Stream generator for the problem of predicting one of three waveform types with drift.
*
* @author Albert Bifet (abifet at cs dot waikato dot ac dot nz)
* @version $Revision: 7 $
*/
public class WaveformGeneratorDrift extends WaveformGenerator {
private static final long serialVersionUID = 1L;
public IntOption numberAttributesDriftOption = new IntOption("numberAttributesDrift",
'd', "Number of attributes with drift.", 0, 0, TOTAL_ATTRIBUTES_INCLUDING_NOISE);
protected int[] numberAttribute;
@Override
public String getPurposeString() {
return "Generates a problem of predicting one of three waveform types with drift.";
}
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
super.prepareForUseImpl(monitor, repository);
int numAtts = this.addNoiseOption.isSet() ? TOTAL_ATTRIBUTES_INCLUDING_NOISE
: NUM_BASE_ATTRIBUTES;
this.numberAttribute = new int[numAtts];
for (int i = 0; i < numAtts; i++) {
this.numberAttribute[i] = i;
}
//Change atributes
int randomInt = this.instanceRandom.nextInt(numAtts);
int offset = this.instanceRandom.nextInt(numAtts);
int swap;
for (int i = 0; i < this.numberAttributesDriftOption.getValue(); i++) {
swap = this.numberAttribute[(i + randomInt) % numAtts];
this.numberAttribute[(i + randomInt) % numAtts] = this.numberAttribute[(i + offset) % numAtts];
this.numberAttribute[(i + offset) % numAtts] = swap;
}
}
@Override
public Instance nextInstance() {
InstancesHeader header = getHeader();
Instance inst = new DenseInstance(header.numAttributes());
inst.setDataset(header);
int waveform = this.instanceRandom.nextInt(NUM_CLASSES);
int choiceA = 0, choiceB = 0;
switch (waveform) {
case 0:
choiceA = 0;
choiceB = 1;
break;
case 1:
choiceA = 0;
choiceB = 2;
break;
case 2:
choiceA = 1;
choiceB = 2;
break;
}
double multiplierA = this.instanceRandom.nextDouble();
double multiplierB = 1.0 - multiplierA;
for (int i = 0; i < NUM_BASE_ATTRIBUTES; i++) {
inst.setValue(this.numberAttribute[i], (multiplierA * hFunctions[choiceA][i])
+ (multiplierB * hFunctions[choiceB][i])
+ this.instanceRandom.nextGaussian());
}
if (this.addNoiseOption.isSet()) {
for (int i = NUM_BASE_ATTRIBUTES; i < TOTAL_ATTRIBUTES_INCLUDING_NOISE; i++) {
inst.setValue(this.numberAttribute[i], this.instanceRandom.nextGaussian());
}
}
inst.setClassValue(waveform);
return inst;
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy