com.yahoo.labs.samoa.instances.MultiLabelPrediction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
* either express or implied. See the License for the specific
* language governing permissions and limitations under the
* License.
*/
package com.yahoo.labs.samoa.instances;
import moa.core.DoubleVector;
import java.io.Serializable;
public class MultiLabelPrediction implements Prediction, Serializable {
protected DoubleVector [] prediction;
public MultiLabelPrediction() {
this(0);
}
public MultiLabelPrediction(int numOutputAttributes) {
prediction=new DoubleVector[numOutputAttributes];
for (int i=0; i outputAttributeIndex) {
ret = prediction[outputAttributeIndex].numValues();
}
return ret;
}
@Override
public double[] getVotes(int outputAttributeIndex) {
double ret[] = null;
if (prediction.length > outputAttributeIndex) {
ret = prediction[outputAttributeIndex].getArrayCopy();
}
return ret;
}
@Override
public double[] getVotes() {
return getVotes(0);
}
@Override
public double getVote(int outputAttributeIndex, int classIndex) {
double ret = 0.0;
if (prediction.length > outputAttributeIndex) {
ret = prediction[outputAttributeIndex].getValue(classIndex);
}
return ret;
}
@Override
public void setVotes(int outputAttributeIndex, double[] votes) {
for(int i=0; i
© 2015 - 2025 Weber Informatics LLC | Privacy Policy