All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.yahoo.labs.samoa.instances.MultiLabelPrediction Maven / Gradle / Ivy

Go to download

Massive On-line Analysis is an environment for massive data mining. MOA provides a framework for data stream mining and includes tools for evaluation and a collection of machine learning algorithms. Related to the WEKA project, also written in Java, while scaling to more demanding problems.

There is a newer version: 2024.07.0
Show newest version
/* 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 * 	        http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
 * either express or implied. See the License for the specific
 * language governing permissions and limitations under the
 * License.  
 */
package com.yahoo.labs.samoa.instances;

import moa.core.DoubleVector;
import java.io.Serializable;

public class MultiLabelPrediction implements Prediction, Serializable {
	protected DoubleVector [] prediction;

	public MultiLabelPrediction() {
		this(0);
	}
	
	public MultiLabelPrediction(int numOutputAttributes) {
		prediction=new DoubleVector[numOutputAttributes];
		for (int i=0; i outputAttributeIndex) {
			ret =  prediction[outputAttributeIndex].numValues();
		}
		return ret;
	}

	@Override
	public double[] getVotes(int outputAttributeIndex) {
		double ret[] = null;
		if (prediction.length > outputAttributeIndex) {
			ret = prediction[outputAttributeIndex].getArrayCopy();
		}
		return ret;
	}
	
	@Override
	public double[] getVotes() {
		return getVotes(0);
	}

	@Override
	public double getVote(int outputAttributeIndex, int classIndex) {
		double ret = 0.0;
		if (prediction.length > outputAttributeIndex) {
			ret = prediction[outputAttributeIndex].getValue(classIndex);
		}
		return ret;
	}

	@Override
	public void setVotes(int outputAttributeIndex, double[] votes) {
		for(int i=0; i




© 2015 - 2025 Weber Informatics LLC | Privacy Policy