com.yahoo.labs.samoa.instances.WekaToSamoaInstanceConverter Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
* either express or implied. See the License for the specific
* language governing permissions and limitations under the
* License.
*/
package com.yahoo.labs.samoa.instances;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
/**
* The Class WekaToSamoaInstanceConverter.
*
* @author abifet
*/
public class WekaToSamoaInstanceConverter implements Serializable{
protected Instances samoaInstanceInformation;
/**
* Samoa instance from weka instance.
*
* @param inst the inst
* @return the instance
*/
public Instance samoaInstance(weka.core.Instance inst) {
Instance samoaInstance;
if (inst instanceof weka.core.SparseInstance) {
double[] attributeValues = new double[inst.numValues()];
int[] indexValues = new int[inst.numValues()];
for (int i = 0; i < inst.numValues(); i++) {
if (inst.index(i) != inst.classIndex()) {
attributeValues[i] = inst.valueSparse(i);
indexValues[i] = inst.index(i);
}
}
samoaInstance = new SparseInstance(inst.weight(), attributeValues,
indexValues, inst.numAttributes());
} else {
samoaInstance = new DenseInstance(inst.weight(), inst.toDoubleArray());
//samoaInstance.deleteAttributeAt(inst.classIndex());
}
if (this.samoaInstanceInformation == null) {
this.samoaInstanceInformation = this.samoaInstancesInformation(inst.dataset());
}
samoaInstance.setDataset(samoaInstanceInformation);
samoaInstance.setClassValue(inst.classValue());
return samoaInstance;
}
/**
* Samoa instances from weka instances.
*
* @param instances the instances
* @return the instances
*/
public Instances samoaInstances(weka.core.Instances instances) {
Instances samoaInstances = samoaInstancesInformation(instances);
//We assume that we have only one samoaInstanceInformation for WekaToSamoaInstanceConverter
this.samoaInstanceInformation = samoaInstances;
for (int i = 0; i < instances.numInstances(); i++) {
samoaInstances.add(samoaInstance(instances.instance(i)));
}
return samoaInstances;
}
/**
* Samoa instances information.
*
* @param instances the instances
* @return the instances
*/
public Instances samoaInstancesInformation(weka.core.Instances instances) {
Instances samoaInstances;
List attInfo = new ArrayList();
for (int i = 0; i < instances.numAttributes(); i++) {
attInfo.add(samoaAttribute(i, instances.attribute(i)));
}
samoaInstances = new Instances(instances.relationName(), attInfo, 0);
samoaInstances.setClassIndex(instances.classIndex());
return samoaInstances;
}
/**
* Get Samoa attribute from a weka attribute.
*
* @param index the index
* @param attribute the attribute
* @return the attribute
*/
protected Attribute samoaAttribute(int index, weka.core.Attribute attribute) {
Attribute samoaAttribute;
if (attribute.isNominal()) {
Enumeration enu = attribute.enumerateValues();
List attributeValues = new ArrayList();
while (enu.hasMoreElements()) {
attributeValues.add((String) enu.nextElement());
}
samoaAttribute = new Attribute(attribute.name(), attributeValues);
} else {
samoaAttribute = new Attribute(attribute.name());
}
return samoaAttribute;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy