moa.classifiers.core.driftdetection.GeometricMovingAverageDM Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of moa Show documentation
Show all versions of moa Show documentation
Massive On-line Analysis is an environment for massive data mining. MOA
provides a framework for data stream mining and includes tools for evaluation
and a collection of machine learning algorithms. Related to the WEKA project,
also written in Java, while scaling to more demanding problems.
/*
* DDM.java
* Copyright (C) 2008 University of Waikato, Hamilton, New Zealand
* @author Manuel Baena ([email protected])
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package moa.classifiers.core.driftdetection;
import com.github.javacliparser.FloatOption;
import com.github.javacliparser.IntOption;
import moa.core.ObjectRepository;
import moa.tasks.TaskMonitor;
/**
* Drift detection method based in Geometric Moving Average Test
*
*
* @author Manuel Baena ([email protected])
* @version $Revision: 7 $
*/
public class GeometricMovingAverageDM extends AbstractChangeDetector {
private static final long serialVersionUID = -3518369648142099719L;
public IntOption minNumInstancesOption = new IntOption(
"minNumInstances",
'n',
"The minimum number of instances before permitting detecting change.",
30, 0, Integer.MAX_VALUE);
public FloatOption lambdaOption = new FloatOption("lambda", 'l',
"Threshold parameter of the Geometric Moving Average Test", 1, 0.0, Float.MAX_VALUE);
public FloatOption alphaOption = new FloatOption("alpha", 'a',
"Alpha parameter of the Geometric Moving Average Test", .99, 0.0, 1.0);
private double m_n;
private double sum;
private double x_mean;
private double alpha;
private double delta;
private double lambda;
public GeometricMovingAverageDM() {
resetLearning();
}
@Override
public void resetLearning() {
m_n = 1.0;
x_mean = 0.0;
sum = 0.0;
alpha = this.alphaOption.getValue();
lambda = this.lambdaOption.getValue();
}
@Override
public void input(double x) {
// It monitors the error rate
if (this.isChangeDetected == true || this.isInitialized == false) {
resetLearning();
this.isInitialized = true;
}
x_mean = x_mean + (x - x_mean) / m_n;
sum = alpha * sum + ( 1.0- alpha) * (x - x_mean);
m_n++;
// System.out.print(prediction + " " + m_n + " " + (m_p+m_s) + " ");
this.estimation = x_mean;
this.isChangeDetected = false;
this.isWarningZone = false;
this.delay = 0;
if (m_n < this.minNumInstancesOption.getValue()) {
return;
}
if (sum > this.lambda) {
this.isChangeDetected = true;
}
}
@Override
public void getDescription(StringBuilder sb, int indent) {
// TODO Auto-generated method stub
}
@Override
protected void prepareForUseImpl(TaskMonitor monitor,
ObjectRepository repository) {
// TODO Auto-generated method stub
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy